Marissa Hofstee , Joyce Endendijk , Jorg Huijding , Bauke van der Velde , Julie Vidal , Maja Deković
{"title":"Maturational changes in frontal EEG alpha and theta activity from infancy into early childhood and the relation with self-regulation in boys and girls","authors":"Marissa Hofstee , Joyce Endendijk , Jorg Huijding , Bauke van der Velde , Julie Vidal , Maja Deković","doi":"10.1016/j.dcn.2024.101445","DOIUrl":null,"url":null,"abstract":"<div><div>There is increasing interest in examining the development of frontal EEG power in relation to self-regulation in early childhood. However, the majority of previous studies solely focuses on the brain’s alpha rhythm and little is known about the differences between young boys and girls. The aim of the current study was therefore to gain more insight into the neural mechanisms involved in the emergence of self-regulation. The sample consisted of 442 children and data were collected at approximately 5 months, 10 months, and around 3 years of age. Latent growth curve models indicated that,while the neurobiological foundations of self-regulation are established during infancy,it is the maturation of the frontal alpha rhythm that contributes to variations in both observed and parent-reported self-regulation. In addition, it appears that boys might have a greater reliance on external regulation than girls during early childhood, as evident by higher scores of girls on both measures of self-regulation. More insight into the role of external regulators in brain maturation can help to implement interventions aimed at establishing bottom-up self-regulatory skills early in life, in order to provide the necessary foundations for the emergence of top-down self-regulatory skills in the preschool period.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"70 ","pages":"Article 101445"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929324001063","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
There is increasing interest in examining the development of frontal EEG power in relation to self-regulation in early childhood. However, the majority of previous studies solely focuses on the brain’s alpha rhythm and little is known about the differences between young boys and girls. The aim of the current study was therefore to gain more insight into the neural mechanisms involved in the emergence of self-regulation. The sample consisted of 442 children and data were collected at approximately 5 months, 10 months, and around 3 years of age. Latent growth curve models indicated that,while the neurobiological foundations of self-regulation are established during infancy,it is the maturation of the frontal alpha rhythm that contributes to variations in both observed and parent-reported self-regulation. In addition, it appears that boys might have a greater reliance on external regulation than girls during early childhood, as evident by higher scores of girls on both measures of self-regulation. More insight into the role of external regulators in brain maturation can help to implement interventions aimed at establishing bottom-up self-regulatory skills early in life, in order to provide the necessary foundations for the emergence of top-down self-regulatory skills in the preschool period.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.