Dea Garic , Khalid W. Al-Ali , Aleeshah Nasir , Omar Azrak , Rebecca L. Grzadzinski , Robert C. McKinstry , Jason J. Wolff , Chimei M. Lee , Juhi Pandey , Robert T. Schultz , Tanya St. John , Stephen R. Dager , Annette M. Estes , Guido Gerig , Lonnie Zwaigenbaum , Natasha Marrus , Kelly N. Botteron , Joseph Piven , Martin Styner , Heather C. Hazlett , Mark D. Shen
{"title":"White matter microstructure in school-age children with down syndrome","authors":"Dea Garic , Khalid W. Al-Ali , Aleeshah Nasir , Omar Azrak , Rebecca L. Grzadzinski , Robert C. McKinstry , Jason J. Wolff , Chimei M. Lee , Juhi Pandey , Robert T. Schultz , Tanya St. John , Stephen R. Dager , Annette M. Estes , Guido Gerig , Lonnie Zwaigenbaum , Natasha Marrus , Kelly N. Botteron , Joseph Piven , Martin Styner , Heather C. Hazlett , Mark D. Shen","doi":"10.1016/j.dcn.2025.101540","DOIUrl":null,"url":null,"abstract":"<div><div>Down syndrome (DS) is the most common genetic cause of intellectual disability, but our understanding of white matter microstructure in children with DS remains limited. Previous studies have reported reductions in white matter integrity, but nearly all studies to date have been conducted in adults or relied solely on diffusion tensor imaging (DTI), which lacks the ability to disentangle underlying properties of white matter organization. This study examined white matter microstructural differences in 7- to 12-year-old children with DS (n = 23), autism (n = 27), and typical development (n = 50) using DTI as well as High Angular Resolution Diffusion Imaging, and Neurite Orientation and Dispersion Imaging. There was a spatially specific pattern of results that showed a dissociation between intra- and inter-hemispheric pathways. Intra-hemispheric pathways (e.g., inferior fronto-occipital fasciculus, superior longitudinal fasciculus) exhibited reduced organization and structural integrity. Inter-hemispheric pathways (e.g., corpus callosum projections) and motor pathways (e.g., corticospinal tract) showed denser neurite packing and lower neurite dispersion. The current findings provide early insight into white matter development in school-aged children with DS and have the potential to further elucidate microstructural differences and inform more targeted clinical trials than what has previously been observed through DTI models alone.</div></div>","PeriodicalId":49083,"journal":{"name":"Developmental Cognitive Neuroscience","volume":"73 ","pages":"Article 101540"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental Cognitive Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878929325000350","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Down syndrome (DS) is the most common genetic cause of intellectual disability, but our understanding of white matter microstructure in children with DS remains limited. Previous studies have reported reductions in white matter integrity, but nearly all studies to date have been conducted in adults or relied solely on diffusion tensor imaging (DTI), which lacks the ability to disentangle underlying properties of white matter organization. This study examined white matter microstructural differences in 7- to 12-year-old children with DS (n = 23), autism (n = 27), and typical development (n = 50) using DTI as well as High Angular Resolution Diffusion Imaging, and Neurite Orientation and Dispersion Imaging. There was a spatially specific pattern of results that showed a dissociation between intra- and inter-hemispheric pathways. Intra-hemispheric pathways (e.g., inferior fronto-occipital fasciculus, superior longitudinal fasciculus) exhibited reduced organization and structural integrity. Inter-hemispheric pathways (e.g., corpus callosum projections) and motor pathways (e.g., corticospinal tract) showed denser neurite packing and lower neurite dispersion. The current findings provide early insight into white matter development in school-aged children with DS and have the potential to further elucidate microstructural differences and inform more targeted clinical trials than what has previously been observed through DTI models alone.
期刊介绍:
The journal publishes theoretical and research papers on cognitive brain development, from infancy through childhood and adolescence and into adulthood. It covers neurocognitive development and neurocognitive processing in both typical and atypical development, including social and affective aspects. Appropriate methodologies for the journal include, but are not limited to, functional neuroimaging (fMRI and MEG), electrophysiology (EEG and ERP), NIRS and transcranial magnetic stimulation, as well as other basic neuroscience approaches using cellular and animal models that directly address cognitive brain development, patient studies, case studies, post-mortem studies and pharmacological studies.