Xiaopei Zhang , Li Li , Yitong Li , Changzheng Dong , Jian Shi , Xiaoqiang Guo , Aixia Sui
{"title":"The role of trimethylation on histone H3 lysine 27 (H3K27me3) in temozolomide resistance of glioma","authors":"Xiaopei Zhang , Li Li , Yitong Li , Changzheng Dong , Jian Shi , Xiaoqiang Guo , Aixia Sui","doi":"10.1016/j.brainres.2024.149252","DOIUrl":null,"url":null,"abstract":"<div><div>Temozolomide (TMZ) is the first-line chemotherapeutic agent for malignant glioma, but its resistance limited the benefits of the treated patients. In this study, the role and significance of trimethylation of histone H3 lysine 27 (H3K27me3) in TMZ resistance were investigated. Data from twenty advanced glioma patients were collected, and their pathological samples were analyzed for H3K27me3 levels. TMZ sensitivity was compared between glioma cells U87 and TMZ-resistant cells U87TR, with H3K27me3 levels determined in both cells. The effects of H3K27me3 demethylases inhibitor GSK-J4, combined with TMZ, were assessed on the proliferation and migration of U87TR cells. The results indicated that a high level of H3K27me3 predicts longer disease free survival (DFS) and overall survival (OS) in glioma patients receiving TMZ treatment. The H3K27me3 level was lower in U87TR cells compared to U87 cells. GSK-J4 increased the H3K27me3 level in U87TR cells and decreased their resistance to TMZ. In summary, this study identified a novel marker of TMZ resistance in glioma and provided a new strategy to address this challenge. These findings are significant for improving the clinical treatment of glioma in the future.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1846 ","pages":"Article 149252"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899324005067","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Temozolomide (TMZ) is the first-line chemotherapeutic agent for malignant glioma, but its resistance limited the benefits of the treated patients. In this study, the role and significance of trimethylation of histone H3 lysine 27 (H3K27me3) in TMZ resistance were investigated. Data from twenty advanced glioma patients were collected, and their pathological samples were analyzed for H3K27me3 levels. TMZ sensitivity was compared between glioma cells U87 and TMZ-resistant cells U87TR, with H3K27me3 levels determined in both cells. The effects of H3K27me3 demethylases inhibitor GSK-J4, combined with TMZ, were assessed on the proliferation and migration of U87TR cells. The results indicated that a high level of H3K27me3 predicts longer disease free survival (DFS) and overall survival (OS) in glioma patients receiving TMZ treatment. The H3K27me3 level was lower in U87TR cells compared to U87 cells. GSK-J4 increased the H3K27me3 level in U87TR cells and decreased their resistance to TMZ. In summary, this study identified a novel marker of TMZ resistance in glioma and provided a new strategy to address this challenge. These findings are significant for improving the clinical treatment of glioma in the future.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.