{"title":"Exploring the potential of metallic and metal oxide nanoparticles for reinforced disease management in agricultural systems: A comprehensive review","authors":"Adnan Raza , Krisha Khandelwal , Soumya Pandit , Mohini Singh , Sandeep Kumar , Sarvesh Rustagi , Nishant Ranjan , Rajan Verma , Kanu Priya , Ram Prasad","doi":"10.1016/j.enmm.2024.100998","DOIUrl":null,"url":null,"abstract":"<div><div>Metallic nanoparticles are regarded as one of the most versatile and environmentally beneficial nanocompounds, especially in agriculture. The anti-phytopathogenic properties of metallic and metal-based nanoparticles are the principal objective of this study. This article provides an analysis of the protection-based applications of nanoparticles comprising the following elements: silicon, chitosan, gold (Au), silver (Ag), platinum (Pt), copper (Cu), nickel (Ni), iron (Fe), zinc (Zn), titanium (Ti), and aluminium (Al), in addition to their metallic oxides and carriers. Furthermore, an examination of their manner of manufacturing using biological precursors, commonly referred to as “green synthesis,” and their impact on phytopathogens and parasites has been presented. We concluded that biosynthesized metallic nanoparticles have a diverse array of potential applications as disease control agents due to their superior antioxidant capacities, reduced phytotoxicity, and increased biocompatibility with plant systems in comparison to conventionally synthesized nanoparticles. Nanoparticles improve agricultural processes by increasing efficiency, lowering environmental impact, and addressing phytotoxicity problems. Material scientists and biologists must work together to refine metallic nanoparticles such as zinc, nickel, and copper for effective and environmentally friendly crop protection. Further investigation is warranted to ascertain the extent of these nanoparticles’ impact on commercial applications through concentration measurements and method of action analysis, notwithstanding these advantages. This research aims to bridge the knowledge gaps that exist between studies of various metals and offer a comprehensive overview of the latest developments in the field.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"22 ","pages":"Article 100998"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153224000862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Metallic nanoparticles are regarded as one of the most versatile and environmentally beneficial nanocompounds, especially in agriculture. The anti-phytopathogenic properties of metallic and metal-based nanoparticles are the principal objective of this study. This article provides an analysis of the protection-based applications of nanoparticles comprising the following elements: silicon, chitosan, gold (Au), silver (Ag), platinum (Pt), copper (Cu), nickel (Ni), iron (Fe), zinc (Zn), titanium (Ti), and aluminium (Al), in addition to their metallic oxides and carriers. Furthermore, an examination of their manner of manufacturing using biological precursors, commonly referred to as “green synthesis,” and their impact on phytopathogens and parasites has been presented. We concluded that biosynthesized metallic nanoparticles have a diverse array of potential applications as disease control agents due to their superior antioxidant capacities, reduced phytotoxicity, and increased biocompatibility with plant systems in comparison to conventionally synthesized nanoparticles. Nanoparticles improve agricultural processes by increasing efficiency, lowering environmental impact, and addressing phytotoxicity problems. Material scientists and biologists must work together to refine metallic nanoparticles such as zinc, nickel, and copper for effective and environmentally friendly crop protection. Further investigation is warranted to ascertain the extent of these nanoparticles’ impact on commercial applications through concentration measurements and method of action analysis, notwithstanding these advantages. This research aims to bridge the knowledge gaps that exist between studies of various metals and offer a comprehensive overview of the latest developments in the field.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation