Abd El-Hakeim T. Kandil , Bahig M. Atia , Farida M.S.E. El-Dars , Mohamed Y.M. Hussein , Mohamed F. Cheira
{"title":"The prospect of using polyvinyl chloride with -n-hydroxyl amine, a metal binding agent, to adsorb uranium from its aqueous solution","authors":"Abd El-Hakeim T. Kandil , Bahig M. Atia , Farida M.S.E. El-Dars , Mohamed Y.M. Hussein , Mohamed F. Cheira","doi":"10.1016/j.enmm.2025.101055","DOIUrl":null,"url":null,"abstract":"<div><div>Polyvinyl chloride-based N-hydroxyl amine (PVC-NHA) was demonstrated as a straightforward and innovative way to remove U(VI) from solutions. The PVC-NHA composite was exposed to exact testing using various techniques, including FT-IR, TGA, BET, <sup>1</sup>H NMR, SEM-EDX, <sup>13</sup>C NMR, and GC–MS assessments, all of which demonstrated the successful preparation of PVC-NHA. The specifications for this composite were accurately carried out, guaranteeing a good result. The optimization of various experimental parameters led to the refinement of measurements such as pH, temperature, agitation time, starting U(VI) concentration, interfering ions, PVC-NHA composite dose, and eluting agents. The optimization adjustments were gained at a temperature of 25 °C, a pH of 3.5, 15 min agitation time, and 0.63 × 10<sup>-3</sup> mol/L U(VI). The PVC-NHA composite exhibited an impressive maximum uptake capacity of 63 mg/g. This uptake capacity was equivalent to a remarkable 126 mg/L of U(VI) ions. The sorption isotherm modelling showed that Langmuir’s model fitted the practical results quite well, which was superior to the performance of the Freundlich model. The theoretical value obtained from Langmuir’s model is 61.7 mg/g, which closely supports the experimental rate of 63 mg/g. Based on U(VI) kinetic adsorption modelling, the adsorption reaction of U(VI) and PVC-NHA could be accurately illustrated by mixed pseudo-first and second-order kinetic modelling. According to thermodynamics, the adsorption process was spontaneous, exothermic, and highly favorable at tiny temperatures. Notably, the loaded composite could be efficiently eluted using 1 M H<sub>2</sub>SO<sub>4</sub>, achieving a remarkable 99 % efficiency rate from an economic standpoint. The PVC-NHA composite exposed excellent selectivity towards most interfering ions, demonstrating a high tolerance limit.</div></div>","PeriodicalId":11716,"journal":{"name":"Environmental Nanotechnology, Monitoring and Management","volume":"23 ","pages":"Article 101055"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Nanotechnology, Monitoring and Management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215153225000169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
Polyvinyl chloride-based N-hydroxyl amine (PVC-NHA) was demonstrated as a straightforward and innovative way to remove U(VI) from solutions. The PVC-NHA composite was exposed to exact testing using various techniques, including FT-IR, TGA, BET, 1H NMR, SEM-EDX, 13C NMR, and GC–MS assessments, all of which demonstrated the successful preparation of PVC-NHA. The specifications for this composite were accurately carried out, guaranteeing a good result. The optimization of various experimental parameters led to the refinement of measurements such as pH, temperature, agitation time, starting U(VI) concentration, interfering ions, PVC-NHA composite dose, and eluting agents. The optimization adjustments were gained at a temperature of 25 °C, a pH of 3.5, 15 min agitation time, and 0.63 × 10-3 mol/L U(VI). The PVC-NHA composite exhibited an impressive maximum uptake capacity of 63 mg/g. This uptake capacity was equivalent to a remarkable 126 mg/L of U(VI) ions. The sorption isotherm modelling showed that Langmuir’s model fitted the practical results quite well, which was superior to the performance of the Freundlich model. The theoretical value obtained from Langmuir’s model is 61.7 mg/g, which closely supports the experimental rate of 63 mg/g. Based on U(VI) kinetic adsorption modelling, the adsorption reaction of U(VI) and PVC-NHA could be accurately illustrated by mixed pseudo-first and second-order kinetic modelling. According to thermodynamics, the adsorption process was spontaneous, exothermic, and highly favorable at tiny temperatures. Notably, the loaded composite could be efficiently eluted using 1 M H2SO4, achieving a remarkable 99 % efficiency rate from an economic standpoint. The PVC-NHA composite exposed excellent selectivity towards most interfering ions, demonstrating a high tolerance limit.
期刊介绍:
Environmental Nanotechnology, Monitoring and Management is a journal devoted to the publication of peer reviewed original research on environmental nanotechnologies, monitoring studies and management for water, soil , waste and human health samples. Critical review articles, short communications and scientific policy briefs are also welcome. The journal will include all environmental matrices except air. Nanomaterials were suggested as efficient cost-effective and environmental friendly alternative to existing treatment materials, from the standpoints of both resource conservation and environmental remediation. The journal aims to receive papers in the field of nanotechnology covering; Developments of new nanosorbents for: •Groundwater, drinking water and wastewater treatment •Remediation of contaminated sites •Assessment of novel nanotechnologies including sustainability and life cycle implications Monitoring and Management papers should cover the fields of: •Novel analytical methods applied to environmental and health samples •Fate and transport of pollutants in the environment •Case studies covering environmental monitoring and public health •Water and soil prevention and legislation •Industrial and hazardous waste- legislation, characterisation, management practices, minimization, treatment and disposal •Environmental management and remediation