{"title":"Photocatalytic NO removal: complete oxidation and reduction reaction for by-product inhibition and end-product recovery","authors":"Wen Cui, Jiaqi Wang, Yan Li, Pingqu Liu, Fan Dong","doi":"10.1039/d4en00715h","DOIUrl":null,"url":null,"abstract":"Nitrogen oxides (NOx, x = 1,2, the proportion of NO was about 95%), as one of primary precursors for particulate matter and ozone, limits the continuous improvement of air quality. Photocatalytic NO purification technology has aroused wide attention and much efforts have been made to realize photocatalytic NO complete oxidation and reduction for toxic by-product inhibition and end-product recovery. This work presents a timely overview of current research progress on the conversion of NO into nitrate/ ammonia (NO3−/NH3) that could be further recycled and utilized. According to the essence of heterogeneous photocatalysis and considering the significance of reaction microenvironment (surface active sites of photocatalyst, target pollutant and reaction medium), this review systematically summarized the progress about control strategy on photocatalyst surface structure and reaction medium. Specifically, the critical overview focused on various surface modification methods of photocatalyst, coping strategy on accelerating mass transfer process of gaseous NO, and the effect of additional introduction of reductant/ antioxidant into reaction system. Furthermore, the research trends and future prospects are discussed, aiming to provide an insight into the breakthroughs and boost the development of photocatalytic NO removal technology.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00715h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen oxides (NOx, x = 1,2, the proportion of NO was about 95%), as one of primary precursors for particulate matter and ozone, limits the continuous improvement of air quality. Photocatalytic NO purification technology has aroused wide attention and much efforts have been made to realize photocatalytic NO complete oxidation and reduction for toxic by-product inhibition and end-product recovery. This work presents a timely overview of current research progress on the conversion of NO into nitrate/ ammonia (NO3−/NH3) that could be further recycled and utilized. According to the essence of heterogeneous photocatalysis and considering the significance of reaction microenvironment (surface active sites of photocatalyst, target pollutant and reaction medium), this review systematically summarized the progress about control strategy on photocatalyst surface structure and reaction medium. Specifically, the critical overview focused on various surface modification methods of photocatalyst, coping strategy on accelerating mass transfer process of gaseous NO, and the effect of additional introduction of reductant/ antioxidant into reaction system. Furthermore, the research trends and future prospects are discussed, aiming to provide an insight into the breakthroughs and boost the development of photocatalytic NO removal technology.
氮氧化物(NOx,x = 1,2,NO 所占比例约为 95%)作为颗粒物和臭氧的主要前体物之一,制约着空气质量的持续改善。光催化氮氧化物净化技术已引起广泛关注,人们为实现光催化氮氧化物的完全氧化和还原以抑制有毒副产物和回收最终产品做出了大量努力。这项工作及时概述了目前将 NO 转化为可进一步回收利用的硝酸/氨(NO3-/NH3)的研究进展。根据异相光催化的本质,并考虑到反应微环境(光催化剂表面活性位点、目标污染物和反应介质)的重要性,本综述系统地总结了光催化剂表面结构和反应介质控制策略的研究进展。具体而言,综述重点讨论了光催化剂的各种表面改性方法、加速气态氮氧化物传质过程的应对策略以及在反应体系中额外引入还原剂/抗氧化剂的效果。此外,还讨论了研究趋势和未来展望,旨在为光催化去除 NO 技术的突破和发展提供启示。
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.