NF-κB regulated expression of A20 controls IKK dependent repression of RIPK1 induced cell death in activated T cells

IF 13.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Death and Differentiation Pub Date : 2024-09-26 DOI:10.1038/s41418-024-01383-6
By Scott Layzell, Alessandro Barbarulo, Geert van Loo, Rudi Beyaert, Benedict Seddon
{"title":"NF-κB regulated expression of A20 controls IKK dependent repression of RIPK1 induced cell death in activated T cells","authors":"By Scott Layzell, Alessandro Barbarulo, Geert van Loo, Rudi Beyaert, Benedict Seddon","doi":"10.1038/s41418-024-01383-6","DOIUrl":null,"url":null,"abstract":"<p>IKK signalling is essential for survival of thymocytes by repressing RIPK1 induced cell death rather than its canonical function of activating NF-κB. The role of IKK signalling in activated T cells is unclear. To investigate this, we analysed activation of IKK2 deficient T cells. While TCR triggering was normal, proliferation and expansion was profoundly impaired. This was not due to defective cell cycle progression, rather dividing T cells became sensitised to TNF induced cell death, since inhibition of RIPK1 kinase activity rescued cell survival. Gene expression analysis of activated IKK2 deficient T cells revealed defective expression of <i>Tnfaip3</i>, that encodes A20, a negative regulator of NF-κB. To test whether A20 expression was required to protect IKK2 deficient T cells from cell death, we generated mice with T cells lacking both A20 and IKK2. Doing this resulted in near complete loss of peripheral T cells, in contrast to mice lacking one or other gene. Strikingly, this phenotype was completely reversed by inactivation of RIPK1 kinase activity in vivo. Together, our data show that IKK signalling in activated T cells protects against RIPK1 dependent death, both by direct phosphorylation of RIPK1 and through NF-κB mediated induction of A20, that we identify for the first time as a key modulator of RIPK1 activity in T cells.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"42 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-024-01383-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

IKK signalling is essential for survival of thymocytes by repressing RIPK1 induced cell death rather than its canonical function of activating NF-κB. The role of IKK signalling in activated T cells is unclear. To investigate this, we analysed activation of IKK2 deficient T cells. While TCR triggering was normal, proliferation and expansion was profoundly impaired. This was not due to defective cell cycle progression, rather dividing T cells became sensitised to TNF induced cell death, since inhibition of RIPK1 kinase activity rescued cell survival. Gene expression analysis of activated IKK2 deficient T cells revealed defective expression of Tnfaip3, that encodes A20, a negative regulator of NF-κB. To test whether A20 expression was required to protect IKK2 deficient T cells from cell death, we generated mice with T cells lacking both A20 and IKK2. Doing this resulted in near complete loss of peripheral T cells, in contrast to mice lacking one or other gene. Strikingly, this phenotype was completely reversed by inactivation of RIPK1 kinase activity in vivo. Together, our data show that IKK signalling in activated T cells protects against RIPK1 dependent death, both by direct phosphorylation of RIPK1 and through NF-κB mediated induction of A20, that we identify for the first time as a key modulator of RIPK1 activity in T cells.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受 NF-κB 调控的 A20 表达可控制 IKK 依赖性抑制活化 T 细胞中 RIPK1 诱导的细胞死亡
IKK 信号通过抑制 RIPK1 诱导的细胞死亡,而非其激活 NF-κB 的典型功能,对胸腺细胞的存活至关重要。IKK 信号在活化 T 细胞中的作用尚不清楚。为了研究这个问题,我们分析了 IKK2 缺失的 T 细胞的活化情况。虽然 TCR 触发正常,但增殖和扩增却严重受损。这并不是由于细胞周期进展的缺陷,而是分裂的 T 细胞对 TNF 诱导的细胞死亡变得敏感,因为抑制 RIPK1 激酶的活性可以挽救细胞的存活。对缺失 IKK2 的活化 T 细胞进行的基因表达分析表明,编码 A20 的 Tnfaip3 的表达存在缺陷,而 A20 是 NF-κB 的负调控因子。为了测试 A20 的表达是否是保护 IKK2 缺乏的 T 细胞免于细胞死亡的必要条件,我们培育了同时缺乏 A20 和 IKK2 的 T 细胞小鼠。这样做的结果是外周 T 细胞几乎完全丧失,这与同时缺乏其中一个基因的小鼠形成了鲜明对比。令人吃惊的是,这种表型在体内通过使 RIPK1 激酶活性失活而完全逆转。总之,我们的数据表明,活化 T 细胞中的 IKK 信号通过 RIPK1 的直接磷酸化和 NF-κB 介导的 A20 的诱导,可防止 RIPK1 依赖性死亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death and Differentiation
Cell Death and Differentiation 生物-生化与分子生物学
CiteScore
24.70
自引率
1.60%
发文量
181
审稿时长
3 months
期刊介绍: Mission, vision and values of Cell Death & Differentiation: To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease. To provide a unified forum for scientists and clinical researchers It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
期刊最新文献
A novel hypoxia-induced lncRNA, SZT2-AS1, boosts HCC progression by mediating HIF heterodimerization and histone trimethylation under a hypoxic microenvironment Polyol pathway-generated fructose is indispensable for growth and survival of non-small cell lung cancer KBTBD2 controls bone development by regulating IGF-1 signaling during osteoblast differentiation ACBP/DBI neutralization for the experimental treatment of fatty liver disease. AKAP1/PKA-mediated GRP75 phosphorylation at mitochondria-associated endoplasmic reticulum membranes protects cancer cells against ferroptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1