A reversible four-electron Sn metal aqueous battery

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-09-27 DOI:10.1016/j.joule.2024.09.002
Jianbo Wang, Sofia K. Catalina, Zhelong Jiang, Xin Xu, Qin Tracy Zhou, William C. Chueh, J. Tyler Mefford
{"title":"A reversible four-electron Sn metal aqueous battery","authors":"Jianbo Wang, Sofia K. Catalina, Zhelong Jiang, Xin Xu, Qin Tracy Zhou, William C. Chueh, J. Tyler Mefford","doi":"10.1016/j.joule.2024.09.002","DOIUrl":null,"url":null,"abstract":"Sn is a promising metal anode for aqueous batteries, with up to four-electron redox available per atom (903 mAh g<sup>−1</sup><sub>Sn</sub>). However, practically harnessing the four-electron Sn(OH)<sub>6</sub><sup>2−</sup>/Sn reversibility remains challenging due to limited mechanistic understanding. Here, we reveal a kinetically asymmetric redox pathway involving a successive four-electron plating and a stepwise 2 + 2 electron stripping through a Sn(OH)<sub>3</sub><sup>−</sup> intermediate. The crossover of Sn(OH)<sub>3</sub><sup>−</sup> induces a reversible self-discharge that reduces Coulombic efficiency but does not impact cyclability, demonstrated by four-electron Sn-Ni full cells that sustain &gt;800 h of stable cycling. By tuning the ion selectivity of the separator to suppress Sn(OH)<sub>3</sub><sup>−</sup> crossover while allowing OH<sup>−</sup> transport, we further demonstrate high Sn utilization (67%) and high energy density (143.1 Wh L<sup>−1</sup><sub>cell</sub>). The results provide key understandings of the tradeoffs in engineering reversible multi-electron metal anodes and define a new benchmark for practical energy density that exceeds any Sn-based aqueous batteries to date.","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.09.002","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Sn is a promising metal anode for aqueous batteries, with up to four-electron redox available per atom (903 mAh g−1Sn). However, practically harnessing the four-electron Sn(OH)62−/Sn reversibility remains challenging due to limited mechanistic understanding. Here, we reveal a kinetically asymmetric redox pathway involving a successive four-electron plating and a stepwise 2 + 2 electron stripping through a Sn(OH)3 intermediate. The crossover of Sn(OH)3 induces a reversible self-discharge that reduces Coulombic efficiency but does not impact cyclability, demonstrated by four-electron Sn-Ni full cells that sustain >800 h of stable cycling. By tuning the ion selectivity of the separator to suppress Sn(OH)3 crossover while allowing OH transport, we further demonstrate high Sn utilization (67%) and high energy density (143.1 Wh L−1cell). The results provide key understandings of the tradeoffs in engineering reversible multi-electron metal anodes and define a new benchmark for practical energy density that exceeds any Sn-based aqueous batteries to date.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可逆式四电子锰金属水电池
锡是一种很有前途的水性电池金属阳极,每个原子具有多达四个电子的氧化还原能力(903 mAh g-1Sn)。然而,由于对机理的了解有限,实际利用 Sn(OH)62-/Sn 的四电子可逆性仍具有挑战性。在这里,我们揭示了一种动力学上不对称的氧化还原途径,其中涉及通过 Sn(OH)3- 中间体进行连续的四电子电镀和逐步的 2 + 2 电子剥离。Sn(OH)3- 的交叉诱发了可逆自放电,降低了库仑效率,但并不影响可循环性,可持续稳定循环 800 小时的四电子锡-镍全电池证明了这一点。通过调整分离器的离子选择性以抑制 Sn(OH)3- 交叉,同时允许 OH- 传输,我们进一步证明了高 Sn 利用率(67%)和高能量密度(143.1 Wh L-1cell)。这些结果使我们对工程可逆多电子金属阳极的权衡有了重要的认识,并为实际能量密度确定了一个新的基准,其能量密度超过了迄今为止任何基于锡的水性电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
A reversible four-electron Sn metal aqueous battery Single-source pulsed laser-deposited perovskite solar cells with enhanced performance via bulk and 2D passivation Shareholder, regulatory, and social influence on firm behavior and energy market outcomes Cost-efficient recycling of organic photovoltaic devices Meniscus-modulated blade coating enables high-quality α-phase formamidinium lead triiodide crystals and efficient perovskite minimodules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1