Tao Xiao, Lingli Liu, Huan Liu, Ting Li, Daqian Cai, Wen Siang Lew, Yongqi Zhang, Haoming Bao, Jin-Lin Yang, Hong Jin Fan
{"title":"Highly rechargeable aqueous Sn-metal-based hybrid-ion batteries","authors":"Tao Xiao, Lingli Liu, Huan Liu, Ting Li, Daqian Cai, Wen Siang Lew, Yongqi Zhang, Haoming Bao, Jin-Lin Yang, Hong Jin Fan","doi":"10.1016/j.joule.2025.101820","DOIUrl":null,"url":null,"abstract":"Tin (Sn) metal, with its intrinsic resistance to the hydrogen evolution reaction (HER), holds great promise as an anode for safe and rechargeable aqueous Sn-metal batteries (ASBs). However, the major challenges for their practical deployment include uneven Sn deposition and low Sn<sup>2+</sup>/Sn<sup>4+</sup> reaction reversibility. To mitigate these challenges, we design ASBs from both anode and electrolyte. First, a stannophilic silver-coated vertical graphene (Ag-VG) host improves the nucleation kinetics and uniform Sn deposition. Second, a biphasic H<sub>2</sub>O/ionic liquid (IL) electrolyte confines Sn<sup>2+</sup> within the aqueous phase, suppressing the formation of Sn<sup>4+</sup> at the cathode side and eliminating the usage of an ion exchange membrane. The biphasic electrolyte and Ag-VG host are coupled with various types of cathodes (herein, halogens, LiCoO<sub>2</sub>, and Li<sub>2</sub>MnO<sub>4</sub>) to fabricate full ASBs. Improved cycling stability and Coulombic efficiency are clearly observed. This work highlights a facile strategy for advancing ASBs.","PeriodicalId":343,"journal":{"name":"Joule","volume":"1 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101820","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tin (Sn) metal, with its intrinsic resistance to the hydrogen evolution reaction (HER), holds great promise as an anode for safe and rechargeable aqueous Sn-metal batteries (ASBs). However, the major challenges for their practical deployment include uneven Sn deposition and low Sn2+/Sn4+ reaction reversibility. To mitigate these challenges, we design ASBs from both anode and electrolyte. First, a stannophilic silver-coated vertical graphene (Ag-VG) host improves the nucleation kinetics and uniform Sn deposition. Second, a biphasic H2O/ionic liquid (IL) electrolyte confines Sn2+ within the aqueous phase, suppressing the formation of Sn4+ at the cathode side and eliminating the usage of an ion exchange membrane. The biphasic electrolyte and Ag-VG host are coupled with various types of cathodes (herein, halogens, LiCoO2, and Li2MnO4) to fabricate full ASBs. Improved cycling stability and Coulombic efficiency are clearly observed. This work highlights a facile strategy for advancing ASBs.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.