Highly rechargeable aqueous Sn-metal-based hybrid-ion batteries

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2025-03-19 DOI:10.1016/j.joule.2025.101820
Tao Xiao , Lingli Liu , Huan Liu , Ting Li , Daqian Cai , Wen Siang Lew , Yongqi Zhang , Haoming Bao , Jin-Lin Yang , Hong Jin Fan
{"title":"Highly rechargeable aqueous Sn-metal-based hybrid-ion batteries","authors":"Tao Xiao ,&nbsp;Lingli Liu ,&nbsp;Huan Liu ,&nbsp;Ting Li ,&nbsp;Daqian Cai ,&nbsp;Wen Siang Lew ,&nbsp;Yongqi Zhang ,&nbsp;Haoming Bao ,&nbsp;Jin-Lin Yang ,&nbsp;Hong Jin Fan","doi":"10.1016/j.joule.2025.101820","DOIUrl":null,"url":null,"abstract":"<div><div>Tin (Sn) metal, with its intrinsic resistance to the hydrogen evolution reaction (HER), holds great promise as an anode for safe and rechargeable aqueous Sn-metal batteries (ASBs). However, the major challenges for their practical deployment include uneven Sn deposition and low Sn<sup>2+</sup>/Sn<sup>4+</sup> reaction reversibility. To mitigate these challenges, we design ASBs from both anode and electrolyte. First, a stannophilic silver-coated vertical graphene (Ag-VG) host improves the nucleation kinetics and uniform Sn deposition. Second, a biphasic H<sub>2</sub>O/ionic liquid (IL) electrolyte confines Sn<sup>2+</sup> within the aqueous phase, suppressing the formation of Sn<sup>4+</sup> at the cathode side and eliminating the usage of an ion exchange membrane. The biphasic electrolyte and Ag-VG host are coupled with various types of cathodes (herein, halogens, LiCoO<sub>2</sub>, and Li<sub>2</sub>MnO<sub>4</sub>) to fabricate full ASBs. Improved cycling stability and Coulombic efficiency are clearly observed. This work highlights a facile strategy for advancing ASBs.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"9 3","pages":"Article 101820"},"PeriodicalIF":38.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435125000017","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tin (Sn) metal, with its intrinsic resistance to the hydrogen evolution reaction (HER), holds great promise as an anode for safe and rechargeable aqueous Sn-metal batteries (ASBs). However, the major challenges for their practical deployment include uneven Sn deposition and low Sn2+/Sn4+ reaction reversibility. To mitigate these challenges, we design ASBs from both anode and electrolyte. First, a stannophilic silver-coated vertical graphene (Ag-VG) host improves the nucleation kinetics and uniform Sn deposition. Second, a biphasic H2O/ionic liquid (IL) electrolyte confines Sn2+ within the aqueous phase, suppressing the formation of Sn4+ at the cathode side and eliminating the usage of an ion exchange membrane. The biphasic electrolyte and Ag-VG host are coupled with various types of cathodes (herein, halogens, LiCoO2, and Li2MnO4) to fabricate full ASBs. Improved cycling stability and Coulombic efficiency are clearly observed. This work highlights a facile strategy for advancing ASBs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Variable and intelligent catalyst design based on local chemical environments in sulfur redox reactions Flexible and lightweight perovskite/Cu(In,Ga)Se2 tandem solar cells Radiation hardness of organic photovoltaics Carboxyl-functionalized perovskite enables ALD growth of a compact and uniform ion migration barrier Continuous conversion of flue gas into syngas by a bipolar membrane-integrated single-cell cyclic system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1