Electrostatic Modulation for Enhanced Ion Selectivity in Gate-All-Around Multilayer Stacked Graphene Nanopore

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Materials & Interfaces Pub Date : 2024-09-27 DOI:10.1021/acsami.4c13281
Niketa AK, Shishir Kumar
{"title":"Electrostatic Modulation for Enhanced Ion Selectivity in Gate-All-Around Multilayer Stacked Graphene Nanopore","authors":"Niketa AK, Shishir Kumar","doi":"10.1021/acsami.4c13281","DOIUrl":null,"url":null,"abstract":"Biological ion channels exhibit exceptional gating capabilities for regulated transport and filtration across cell membranes. This study explores similar gating functions in artificial nanopores using graphene membranes. By applying direct voltage, we can dynamically control ion distribution around nanopores, allowing for real-time triggering, dynamic flow control, and adaptability to varying pore sizes. We investigate electrostatic modulation of ion transport in a stacked nanoporous graphene configuration, which mitigates defects from growth and transfer processes. Nanopores are created using oxygen plasma, enabling fine-tuning of ion transport. External voltage enhances ion conductivity at positive voltages and reduces it at negative voltages, demonstrating significant modulation by the surface potential-induced electric double layer (EDL). Voltage-dependent ion enrichment and depletion within the nanopores affect the effective surface charge density, facilitating controllable ion sieving. Results show that nanopores, with sizes comparable to hydrated ion diameters, achieve high and tunable voltage-gating functionality, enabling efficient on-demand ion transport. Voltage-gating effectively tunes ion selectivity in multilayer stacked graphene membranes, with negative voltages impeding divalent cations and positive voltages mimicking biological K<sup>+</sup> nanochannels. This research lays the foundation for developing nanopores with tunable ion selectivity for applications in energy conversion, ion separation, and nanofluidics.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13281","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biological ion channels exhibit exceptional gating capabilities for regulated transport and filtration across cell membranes. This study explores similar gating functions in artificial nanopores using graphene membranes. By applying direct voltage, we can dynamically control ion distribution around nanopores, allowing for real-time triggering, dynamic flow control, and adaptability to varying pore sizes. We investigate electrostatic modulation of ion transport in a stacked nanoporous graphene configuration, which mitigates defects from growth and transfer processes. Nanopores are created using oxygen plasma, enabling fine-tuning of ion transport. External voltage enhances ion conductivity at positive voltages and reduces it at negative voltages, demonstrating significant modulation by the surface potential-induced electric double layer (EDL). Voltage-dependent ion enrichment and depletion within the nanopores affect the effective surface charge density, facilitating controllable ion sieving. Results show that nanopores, with sizes comparable to hydrated ion diameters, achieve high and tunable voltage-gating functionality, enabling efficient on-demand ion transport. Voltage-gating effectively tunes ion selectivity in multilayer stacked graphene membranes, with negative voltages impeding divalent cations and positive voltages mimicking biological K+ nanochannels. This research lays the foundation for developing nanopores with tunable ion selectivity for applications in energy conversion, ion separation, and nanofluidics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过静电调制增强栅极全方位多层堆叠石墨烯纳米孔的离子选择性
生物离子通道在跨细胞膜调控传输和过滤方面表现出卓越的门控能力。本研究利用石墨烯膜探索人工纳米孔的类似门控功能。通过施加直接电压,我们可以动态控制纳米孔周围的离子分布,从而实现实时触发、动态流量控制以及对不同孔径的适应性。我们研究了叠层纳米多孔石墨烯配置中离子传输的静电调制,这种配置可减轻生长和转移过程中产生的缺陷。利用氧等离子体创建纳米孔,可对离子传输进行微调。外加电压在正电压下会增强离子传导性,而在负电压下则会降低离子传导性,这表明表面电位诱导的电双层(EDL)对离子传导性有显著的调节作用。纳米孔内随电压变化的离子富集和耗竭会影响有效的表面电荷密度,从而促进可控的离子筛分。研究结果表明,纳米孔的尺寸与水合离子直径相当,具有很高的可调电压门功能,可实现高效的按需离子传输。电压门控可有效调节多层堆叠石墨烯膜中的离子选择性,负电压阻碍二价阳离子,正电压模拟生物 K+ 纳米通道。这项研究为开发具有可调离子选择性的纳米孔奠定了基础,可应用于能量转换、离子分离和纳米流体等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
期刊最新文献
Low-Grade Chronic Inflammation: a Shared Mechanism for Chronic Diseases. Predictors of Inflammation-Mediated Preterm Birth. Factors Contributing to Heat Tolerance in Humans and Experimental Models. Harnessing Deep Learning Methods for Voltage-Gated Ion Channel Drug Discovery. Role of RANKL Signaling in Bone Homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1