Caroline V. B. Gjelstrup, Paul G. Myers, Craig M. Lee, Kumiko Azetsu‐Scott, Colin A. Stedmon
{"title":"Connectivity between Siberian river runoff and the lower limb of the Atlantic Meridional Overturning Circulation","authors":"Caroline V. B. Gjelstrup, Paul G. Myers, Craig M. Lee, Kumiko Azetsu‐Scott, Colin A. Stedmon","doi":"10.1002/lno.12696","DOIUrl":null,"url":null,"abstract":"Freshwater from the Arctic participates in the globally important Atlantic Meridional Overturning Circulation (AMOC). We use high‐resolution, in situ observations of dissolved organic matter (DOM) fluorescence to trace the origins of freshwater and organic carbon in the densest component of the AMOC, namely Denmark Strait Overflow Water (DSOW). We find a distinct terrestrial DOM signal in DSOW and trace it upstream to the Siberian shelves in the Arctic Ocean. This implies a riverine origin of freshwater in DSOW. We estimate that the Siberian Shelf water contribution constitutes approximately 1% of DSOW. Ocean circulation modeling confirms the inferred pathway and highlights Denmark Strait as an important location for the entrainment of the riverine signal into DSOW. Our proposed method can be deployed on a range of observing systems to elucidate freshwater dispersion across the Arctic and subarctic, thereby contributing to the broader discussion on freshwater impacts and organic carbon sequestration in the AMOC.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12696","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Freshwater from the Arctic participates in the globally important Atlantic Meridional Overturning Circulation (AMOC). We use high‐resolution, in situ observations of dissolved organic matter (DOM) fluorescence to trace the origins of freshwater and organic carbon in the densest component of the AMOC, namely Denmark Strait Overflow Water (DSOW). We find a distinct terrestrial DOM signal in DSOW and trace it upstream to the Siberian shelves in the Arctic Ocean. This implies a riverine origin of freshwater in DSOW. We estimate that the Siberian Shelf water contribution constitutes approximately 1% of DSOW. Ocean circulation modeling confirms the inferred pathway and highlights Denmark Strait as an important location for the entrainment of the riverine signal into DSOW. Our proposed method can be deployed on a range of observing systems to elucidate freshwater dispersion across the Arctic and subarctic, thereby contributing to the broader discussion on freshwater impacts and organic carbon sequestration in the AMOC.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.