Analysis of rogue wave in the mid-infrared supercontinuum under femtosecond weak seed pulse conditions based on deep learning

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2024-09-27 DOI:10.1016/j.chaos.2024.115575
Shuo Liu , Xu Han , Yueyu Wang , Fengxiao Liu , Saili Zhao , Jiaqi Lv , Qi Li
{"title":"Analysis of rogue wave in the mid-infrared supercontinuum under femtosecond weak seed pulse conditions based on deep learning","authors":"Shuo Liu ,&nbsp;Xu Han ,&nbsp;Yueyu Wang ,&nbsp;Fengxiao Liu ,&nbsp;Saili Zhao ,&nbsp;Jiaqi Lv ,&nbsp;Qi Li","doi":"10.1016/j.chaos.2024.115575","DOIUrl":null,"url":null,"abstract":"<div><div>The generation process of rogue wave (RW) is affected by noise, which is an unstable state, and the existence of RW will reduce the stability of mid-infrared supercontinuum. However, the process of studying RW requires a large amount of data simulation and statistics, and traditional methods are time-consuming and inefficient. Therefore, this paper adopts long short-term memory (LSTM) neural network to obtain the spectrum information after transmission for a certain distance according to the waveform information of the incident pulse. The results show that the LSTM neural network structure can train and predict the peak power, time deviation information, time intensity evolution and spectrum evolution of RW after 10 cm propagation with only changing the number of internal units. And it performs well on both large and small data sets.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011275","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The generation process of rogue wave (RW) is affected by noise, which is an unstable state, and the existence of RW will reduce the stability of mid-infrared supercontinuum. However, the process of studying RW requires a large amount of data simulation and statistics, and traditional methods are time-consuming and inefficient. Therefore, this paper adopts long short-term memory (LSTM) neural network to obtain the spectrum information after transmission for a certain distance according to the waveform information of the incident pulse. The results show that the LSTM neural network structure can train and predict the peak power, time deviation information, time intensity evolution and spectrum evolution of RW after 10 cm propagation with only changing the number of internal units. And it performs well on both large and small data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的飞秒弱种子脉冲条件下中红外超连续的流氓波分析
流氓波(RW)的产生过程受噪声影响,是一种不稳定状态,流氓波的存在会降低中红外超连续的稳定性。然而,研究流氓波的过程需要大量的数据模拟和统计,传统方法耗时长、效率低。因此,本文采用长短期记忆(LSTM)神经网络,根据入射脉冲的波形信息,获取一定距离传输后的频谱信息。结果表明,LSTM 神经网络结构只需改变内部单元的数量,就能训练和预测 RW 传播 10 cm 后的峰值功率、时间偏差信息、时间强度演变和频谱演变。而且它在大型和小型数据集上都表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Emergence of relaxation beat-waves in genuinely nonlinear Klein-Gordon chain with bi-harmonic parametric excitation A special memristive diode-bridge-based hyperchaotic hyperjerk autonomous circuit with three positive Lyapunov exponents Impulsive quasi-containment control in stochastic heterogeneous multiplex networks A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling Prescribed-time multi-coalition Nash equilibrium seeking by event-triggered communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1