Lei Liu , Xuan-Xuan Zhou , Xi-Yang Xie , Wen-Rong Sun
{"title":"Numerical study of vector solitons with the oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations","authors":"Lei Liu , Xuan-Xuan Zhou , Xi-Yang Xie , Wen-Rong Sun","doi":"10.1016/j.matcom.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we numerically investigate vector solitons with oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations, which are widely applied to varieties of physical contexts such as the simultaneous propagation of nonlinear optical pulses and the dynamics of two-components Bose–Einstein condensates. We develop the time-splitting Chebyshev–Galerkin method based on a transformation to accurately compute the vector soliton solutions. Compared to the finite difference method, numerical experiments show that the method with spectral accuracy and high efficiency is necessary for simulating the dynamics evolution of vector solitons. Combined with modulation instability conditions, linear stability analysis and direct numerical simulation, we reveal that the bright-dark and dark-dark solitons with various combinations of parameters under perturbations have qualitative differences. Particularly, vector solitons in unstable background with different wave numbers present distinct dynamics evolutions. The results help us to understand soliton dynamics with oscillatory phase backgrounds and the superposition between nonlinear waves.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"228 ","pages":"Pages 466-484"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003641","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we numerically investigate vector solitons with oscillatory phase backgrounds in the integrable coupled nonlinear Schrödinger equations, which are widely applied to varieties of physical contexts such as the simultaneous propagation of nonlinear optical pulses and the dynamics of two-components Bose–Einstein condensates. We develop the time-splitting Chebyshev–Galerkin method based on a transformation to accurately compute the vector soliton solutions. Compared to the finite difference method, numerical experiments show that the method with spectral accuracy and high efficiency is necessary for simulating the dynamics evolution of vector solitons. Combined with modulation instability conditions, linear stability analysis and direct numerical simulation, we reveal that the bright-dark and dark-dark solitons with various combinations of parameters under perturbations have qualitative differences. Particularly, vector solitons in unstable background with different wave numbers present distinct dynamics evolutions. The results help us to understand soliton dynamics with oscillatory phase backgrounds and the superposition between nonlinear waves.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.