Charity M. Nkinyam , Chika Oliver Ujah , Kingsley C. Nnakwo , Daramy V.V. Kallon
{"title":"Insight into organic photovoltaic cell: Prospect and challenges","authors":"Charity M. Nkinyam , Chika Oliver Ujah , Kingsley C. Nnakwo , Daramy V.V. Kallon","doi":"10.1016/j.uncres.2024.100121","DOIUrl":null,"url":null,"abstract":"<div><div>Organic photovoltaics have attracted considerable interest in recent years as viable alternatives to conventional silicon-based solar cells. The present study addressed the increasing demand for alternative energy sources amid greenhouse gas emissions and rising traditional energy costs. OPV cells hold multiple benefits compared to their inorganic equivalents, including high flexibility, low weight, and the promise of inexpensive solution manufacturing. Typically, the active layer OPV cells comprise a blend of electron-donating and electron-receiving organic materials that may absorb a wide range of sunlight on adjustment. Recent breakthroughs in materials science and device engineering have led to significant advancements in OPV, including non-fullerene acceptors and efficiency exceeding 19.6 %, highlighting a transformative shift towards more efficient and eco-friendly energy alternatives. The review addressed the prospects and challenges of this innovative technology, outlining current limitations and proposing efficiency improvement strategies involving photo-protective mechanisms, stable material design, and approaches to comprehend and enhance OPV performance. Despite the promising outlook, challenges such as degradation and stability issues, power conversion efficiency, and manufacturing complexities remain substantial barriers that need resolution for widespread adoption. In conclusion, the study advocated for future research in OPV technology to focus on innovative approaches, technological advancements, and collaborative efforts toward novel materials development, creative engineering solutions, and optimized device architectures, enhancing the effectiveness and stability of OPV cells. This review emphasized the urgency of tackling such problems to fully exploit the opportunities offered by OPVs for a greener and more efficient energy future.</div></div>","PeriodicalId":101263,"journal":{"name":"Unconventional Resources","volume":"5 ","pages":"Article 100121"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unconventional Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666519024000499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Organic photovoltaics have attracted considerable interest in recent years as viable alternatives to conventional silicon-based solar cells. The present study addressed the increasing demand for alternative energy sources amid greenhouse gas emissions and rising traditional energy costs. OPV cells hold multiple benefits compared to their inorganic equivalents, including high flexibility, low weight, and the promise of inexpensive solution manufacturing. Typically, the active layer OPV cells comprise a blend of electron-donating and electron-receiving organic materials that may absorb a wide range of sunlight on adjustment. Recent breakthroughs in materials science and device engineering have led to significant advancements in OPV, including non-fullerene acceptors and efficiency exceeding 19.6 %, highlighting a transformative shift towards more efficient and eco-friendly energy alternatives. The review addressed the prospects and challenges of this innovative technology, outlining current limitations and proposing efficiency improvement strategies involving photo-protective mechanisms, stable material design, and approaches to comprehend and enhance OPV performance. Despite the promising outlook, challenges such as degradation and stability issues, power conversion efficiency, and manufacturing complexities remain substantial barriers that need resolution for widespread adoption. In conclusion, the study advocated for future research in OPV technology to focus on innovative approaches, technological advancements, and collaborative efforts toward novel materials development, creative engineering solutions, and optimized device architectures, enhancing the effectiveness and stability of OPV cells. This review emphasized the urgency of tackling such problems to fully exploit the opportunities offered by OPVs for a greener and more efficient energy future.