Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-09-29 DOI:10.1038/s41467-024-52611-z
Yahan Meng, Mingming Wang, Jiazhi Wang, Xuehai Huang, Xiang Zhou, Muhammad Sajid, Zehui Xie, Ruihao Luo, Zhengxin Zhu, Zuodong Zhang, Nawab Ali Khan, Yu Wang, Zhenyu Li, Wei Chen
{"title":"Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency","authors":"Yahan Meng, Mingming Wang, Jiazhi Wang, Xuehai Huang, Xiang Zhou, Muhammad Sajid, Zehui Xie, Ruihao Luo, Zhengxin Zhu, Zuodong Zhang, Nawab Ali Khan, Yu Wang, Zhenyu Li, Wei Chen","doi":"10.1038/s41467-024-52611-z","DOIUrl":null,"url":null,"abstract":"<p>Construction of a solid electrolyte interphase (SEI) of zinc (Zn) electrode is an effective strategy to stabilize Zn electrode/electrolyte interface. However, single-layer SEIs of Zn electrodes undergo rupture and consequent failure during repeated Zn plating/stripping. Here, we propose the construction of a robust bilayer SEI that simultaneously achieves homogeneous Zn<sup>2+</sup> transport and durable mechanical stability for high Zn utilization rate (ZUR) and Coulombic efficiency (CE) of Zn electrode by adding 1,3-Dimethyl-2-imidazolidinone as a representative electrolyte additive. This bilayer SEI on Zn surface consists of a crystalline ZnCO<sub>3</sub>-rich outer layer and an amorphous ZnS-rich inner layer. The ordered outer layer improves the mechanical stability during cycling, and the amorphous inner layer homogenizes Zn<sup>2+</sup> transport for homogeneous, dense Zn deposition. As a result, the bilayer SEI enables reversible Zn plating/stripping for 4800 cycles with an average CE of 99.95% (± 0.06%). Meanwhile, Zn | |Zn symmetric cells show durable lifetime for over 550 h with a high ZUR of 98% under an areal capacity of 28.4 mAh cm<sup>−2</sup>. Furthermore, the Zn full cells based on the bilayer SEI functionalized Zn negative electrodes coupled with different positive electrodes all exhibit stable cycling performance under high ZUR.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52611-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Construction of a solid electrolyte interphase (SEI) of zinc (Zn) electrode is an effective strategy to stabilize Zn electrode/electrolyte interface. However, single-layer SEIs of Zn electrodes undergo rupture and consequent failure during repeated Zn plating/stripping. Here, we propose the construction of a robust bilayer SEI that simultaneously achieves homogeneous Zn2+ transport and durable mechanical stability for high Zn utilization rate (ZUR) and Coulombic efficiency (CE) of Zn electrode by adding 1,3-Dimethyl-2-imidazolidinone as a representative electrolyte additive. This bilayer SEI on Zn surface consists of a crystalline ZnCO3-rich outer layer and an amorphous ZnS-rich inner layer. The ordered outer layer improves the mechanical stability during cycling, and the amorphous inner layer homogenizes Zn2+ transport for homogeneous, dense Zn deposition. As a result, the bilayer SEI enables reversible Zn plating/stripping for 4800 cycles with an average CE of 99.95% (± 0.06%). Meanwhile, Zn | |Zn symmetric cells show durable lifetime for over 550 h with a high ZUR of 98% under an areal capacity of 28.4 mAh cm−2. Furthermore, the Zn full cells based on the bilayer SEI functionalized Zn negative electrodes coupled with different positive electrodes all exhibit stable cycling performance under high ZUR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于锌电极的高利用率和高效率双层固体电解质中间相
在锌(Zn)电极上构建固体电解质相(SEI)是稳定锌电极/电解质界面的有效策略。然而,锌电极的单层 SEI 在反复镀锌/剥锌过程中会发生破裂,从而导致失效。在此,我们提出通过添加 1,3-二甲基-2-咪唑烷酮作为代表性电解质添加剂,构建一种坚固的双层 SEI,它能同时实现均匀的 Zn2+ 传输和持久的机械稳定性,从而提高锌电极的锌利用率(ZUR)和库仑效率(CE)。Zn 表面的这种双层 SEI 由富含结晶 ZnCO3 的外层和富含无定形 ZnS 的内层组成。有序的外层提高了循环过程中的机械稳定性,而无定形的内层则均匀了 Zn2+ 的传输,实现了均匀、致密的锌沉积。因此,双层 SEI 可在 4800 次循环中实现可逆的锌镀层/剥离,平均 CE 为 99.95% (± 0.06%)。同时,Zn | |Zn 对称电池在 28.4 mAh cm-2 的面积容量下显示出超过 550 小时的耐用寿命,ZUR 高达 98%。此外,基于双层 SEI 功能化锌负极和不同正极的全锌电池在高 ZUR 下均表现出稳定的循环性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Learning quantum properties from short-range correlations using multi-task networks. Artificial superconducting Kondo lattice in a van der Waals heterostructure MATES: a deep learning-based model for locus-specific quantification of transposable elements in single cell Magnetic diffusion in solar atmosphere produces measurable electric fields Best practices for differential accessibility analysis in single-cell epigenomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1