Magnetic diffusion in solar atmosphere produces measurable electric fields

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-10-11 DOI:10.1038/s41467-024-53102-x
Tetsu Anan, Roberto Casini, Han Uitenbroek, Thomas A. Schad, Hector Socas-Navarro, Kiyoshi Ichimoto, Sarah A. Jaeggli, Sanjiv K. Tiwari, Jeffrey W. Reep, Yukio Katsukawa, Ayumi Asai, Jiong Qiu, Kevin P. Reardon, Alexandra Tritschler, Friedrich Wöger, Thomas R. Rimmele
{"title":"Magnetic diffusion in solar atmosphere produces measurable electric fields","authors":"Tetsu Anan, Roberto Casini, Han Uitenbroek, Thomas A. Schad, Hector Socas-Navarro, Kiyoshi Ichimoto, Sarah A. Jaeggli, Sanjiv K. Tiwari, Jeffrey W. Reep, Yukio Katsukawa, Ayumi Asai, Jiong Qiu, Kevin P. Reardon, Alexandra Tritschler, Friedrich Wöger, Thomas R. Rimmele","doi":"10.1038/s41467-024-53102-x","DOIUrl":null,"url":null,"abstract":"<p>The efficient release of magnetic energy in astrophysical plasmas, such as during solar flares, can in principle be achieved through magnetic diffusion, at a rate determined by the associated electric field. However, attempts at measuring electric fields in the solar atmosphere are scarce, and none exist for sites where the magnetic energy is presumably released. Here, we present observations of an energetic event using the National Science Foundation’s Daniel K. Inouye Solar Telescope, where we detect the polarization signature of electric fields associated with magnetic diffusion. We measure the linear and circular polarization across the hydrogen Hε Balmer line at 397 nm at the site of a brightening event in the solar chromosphere. Our spectro-polarimetric modeling demonstrates that the observed polarization signals can only be explained by the presence of electric fields, providing conclusive evidence of magnetic diffusion, and opening a new window for the quantitative study of this mechanism in space plasmas.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53102-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient release of magnetic energy in astrophysical plasmas, such as during solar flares, can in principle be achieved through magnetic diffusion, at a rate determined by the associated electric field. However, attempts at measuring electric fields in the solar atmosphere are scarce, and none exist for sites where the magnetic energy is presumably released. Here, we present observations of an energetic event using the National Science Foundation’s Daniel K. Inouye Solar Telescope, where we detect the polarization signature of electric fields associated with magnetic diffusion. We measure the linear and circular polarization across the hydrogen Hε Balmer line at 397 nm at the site of a brightening event in the solar chromosphere. Our spectro-polarimetric modeling demonstrates that the observed polarization signals can only be explained by the presence of electric fields, providing conclusive evidence of magnetic diffusion, and opening a new window for the quantitative study of this mechanism in space plasmas.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳大气中的磁扩散产生可测量的电场
天体物理等离子体中磁能的有效释放,例如在太阳耀斑期间,原则上可以通过磁扩散来实现,其速度由相关电场决定。然而,在太阳大气中测量电场的尝试非常少,而且在磁能可能被释放的地方也没有任何尝试。在这里,我们利用美国国家科学基金会的丹尼尔-K-井上太阳望远镜(Daniel K. Inouye Solar Telescope)对一个高能事件进行了观测,探测到了与磁扩散相关的电场的极化特征。我们在太阳色球发生增亮事件的地点测量了波长为 397 nm 的氢 Hε 巴尔默线的线极化和圆极化。我们的光谱极化模型表明,观测到的极化信号只能用电场的存在来解释,这为磁扩散提供了确凿的证据,并为定量研究空间等离子体中的这一机制打开了一扇新窗口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Learning quantum properties from short-range correlations using multi-task networks. Artificial superconducting Kondo lattice in a van der Waals heterostructure MATES: a deep learning-based model for locus-specific quantification of transposable elements in single cell Magnetic diffusion in solar atmosphere produces measurable electric fields Best practices for differential accessibility analysis in single-cell epigenomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1