Eduardo Gainete Ramos , Antonia Gomes de Queiroz , Maria Beatriz da Rocha Veleirinho , Ricardo Barbosa Felipini , Robson Marcelo Di Piero
{"title":"Nanoformulations containing rosemary oil for gray mold control in strawberries","authors":"Eduardo Gainete Ramos , Antonia Gomes de Queiroz , Maria Beatriz da Rocha Veleirinho , Ricardo Barbosa Felipini , Robson Marcelo Di Piero","doi":"10.1016/j.scienta.2024.113678","DOIUrl":null,"url":null,"abstract":"<div><div>Gray mold, caused by <em>Botrytis cinerea</em>, affects strawberry crops (<em>Fragaria</em> x <em>ananassa</em>) and can cause major losses. Managing the disease with fungicides can harm health and the environment and can lead to the selection of pathogens resistant to their active ingredients. The use of essential oils (EOs) represents an alternative control method due to their richness in antimicrobial compounds, such as rosemary EO (<em>Rosmarinus officinalis</em>). However, the high volatility of several components of these oils makes commercial use difficult, and nanoencapsulation presents a technology to increase stability. In the present study, three formulations containing rosemary EO—nanoemulsion (NE), nanostructured lipid carrier (NLC), and nanocapsules with chitosan (NC)—were evaluated on strawberry fruits and against the fungus. The nanoformulations retained their characteristics (mean values: size 142 nm; polydispersity index 0.131; pH 4.99; zeta potential -20.2 mV for NE and NLC, and 19.1 mV for NC) when stored at 40 °C for 60 days. All nanoformulations had a direct effect on spore germination and mycelial growth of <em>B. cinerea</em>, possibly due to damage caused to the cell wall and plasma membrane, and changes in the pathogen's oxidative balance. NE containing 2 % EO, when applied by immersion, reduced the incidence and severity of the disease by around 40 % and 70 %, respectively, 6 days after treatment. The fruits treated with this formulation maintained their physicochemical characteristics for longer. Thus, the use of rosemary oil from NE can be an option for managing gray mold and increasing the shelf life of the fruits.</div></div>","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"338 ","pages":"Article 113678"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304423824008318","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Gray mold, caused by Botrytis cinerea, affects strawberry crops (Fragaria x ananassa) and can cause major losses. Managing the disease with fungicides can harm health and the environment and can lead to the selection of pathogens resistant to their active ingredients. The use of essential oils (EOs) represents an alternative control method due to their richness in antimicrobial compounds, such as rosemary EO (Rosmarinus officinalis). However, the high volatility of several components of these oils makes commercial use difficult, and nanoencapsulation presents a technology to increase stability. In the present study, three formulations containing rosemary EO—nanoemulsion (NE), nanostructured lipid carrier (NLC), and nanocapsules with chitosan (NC)—were evaluated on strawberry fruits and against the fungus. The nanoformulations retained their characteristics (mean values: size 142 nm; polydispersity index 0.131; pH 4.99; zeta potential -20.2 mV for NE and NLC, and 19.1 mV for NC) when stored at 40 °C for 60 days. All nanoformulations had a direct effect on spore germination and mycelial growth of B. cinerea, possibly due to damage caused to the cell wall and plasma membrane, and changes in the pathogen's oxidative balance. NE containing 2 % EO, when applied by immersion, reduced the incidence and severity of the disease by around 40 % and 70 %, respectively, 6 days after treatment. The fruits treated with this formulation maintained their physicochemical characteristics for longer. Thus, the use of rosemary oil from NE can be an option for managing gray mold and increasing the shelf life of the fruits.
期刊介绍:
Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.