{"title":"Unstable Sliding of Plagioclase Gouge and Deformation Mechanisms Under Hydrothermal Conditions With Effective Normal Stresses of 100–300 MPa","authors":"Changrong He, Xi Ma, Shengnan Yao","doi":"10.1029/2024JB028883","DOIUrl":null,"url":null,"abstract":"<p>Plagioclase feldspar is a major mineral in mafic crustal rocks. To better understand the deformation mechanism of plagioclase feldspar during frictional faulting, we conducted shearing experiments on simulated plagioclase gouge in a wide range of effective normal stress of 100–300 MPa, pore-water pressure of 30–100 MPa, and temperatures ranging from 100°C to 600°C. The coefficient of friction is found to range from 0.65 to 0.74 across the entire temperature range, showing no significant thermal weakening process. Except for a case at 200°C with an effective normal stress of 300 MPa, the frictional sliding is velocity weakening over the whole temperature range, showing a steady-state rate dependence (<i>a−b</i>) ranging from −0.5 × 10<sup>−3</sup> to −8.6 × 10<sup>−3</sup>. This property facilitates nucleation of unstable slips in frictional faulting. Above 200°C, the direct rate effect parameter (<i>a</i>) and the evolution effect parameter (<i>b</i>) of friction increase with temperature up to a threshold of 400°C or 500°C, depending on the effective normal stress. This thermal enhancement suggests thermally activated creep at contact junctions governed by intergranular pressure solution, as evidenced by microstructural signatures indicating the prevalence of very fine precipitates formed at the surfaces of gouge particles as a result of pressure solution. In frictional sliding of plagioclase, a low effective normal stress of 100 MPa corresponds to a higher degree of velocity weakening and tends to facilitate seismic slip rather than slow slips, whereas the high effective normal stress of 300 MPa corresponds to a minor velocity weakening which may cause slow-slip events in faults of limited size.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB028883","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Plagioclase feldspar is a major mineral in mafic crustal rocks. To better understand the deformation mechanism of plagioclase feldspar during frictional faulting, we conducted shearing experiments on simulated plagioclase gouge in a wide range of effective normal stress of 100–300 MPa, pore-water pressure of 30–100 MPa, and temperatures ranging from 100°C to 600°C. The coefficient of friction is found to range from 0.65 to 0.74 across the entire temperature range, showing no significant thermal weakening process. Except for a case at 200°C with an effective normal stress of 300 MPa, the frictional sliding is velocity weakening over the whole temperature range, showing a steady-state rate dependence (a−b) ranging from −0.5 × 10−3 to −8.6 × 10−3. This property facilitates nucleation of unstable slips in frictional faulting. Above 200°C, the direct rate effect parameter (a) and the evolution effect parameter (b) of friction increase with temperature up to a threshold of 400°C or 500°C, depending on the effective normal stress. This thermal enhancement suggests thermally activated creep at contact junctions governed by intergranular pressure solution, as evidenced by microstructural signatures indicating the prevalence of very fine precipitates formed at the surfaces of gouge particles as a result of pressure solution. In frictional sliding of plagioclase, a low effective normal stress of 100 MPa corresponds to a higher degree of velocity weakening and tends to facilitate seismic slip rather than slow slips, whereas the high effective normal stress of 300 MPa corresponds to a minor velocity weakening which may cause slow-slip events in faults of limited size.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.