Oleg Melnik, Vladimir Lyakhovsky, Nikolai M. Shapiro
{"title":"Rapid Gas Bubble Growth in Basaltic Magma as a Source of Deep Long Period Volcanic Earthquakes","authors":"Oleg Melnik, Vladimir Lyakhovsky, Nikolai M. Shapiro","doi":"10.1029/2024JB029602","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we present numerical modeling aimed to explain Deep Long Period (DLP) events occurring in middle-to-lower crust beneath volcanoes and often observed in association with volcanic eruptions or their precursors. We consider a DLP generating mechanism caused by the rapid growth of gas bubbles in response to the slow decompression of H<sub>2</sub>O–CO<sub>2</sub> over-saturated basaltic magma. The nucleation and rapid growth of gas bubbles lead to rapid pressure change in the magma and elastic rebound of the host rocks, radiating seismic waves recorded as DLP events. The magma and host rocks are modeled as Maxwell bodies with different relaxation times and elastic moduli. Simulations of a single sill-shaped intrusion with different parameters demonstrate that realistic amplitudes and frequencies of P and S seismic waves can be obtained when considering intrusions with linear sizes of the order of 100 m. We then consider a case of two closely located sills and model their interaction. We speculate on conditions that can result in consecutive triggering of the bubble growth in multiple closely located batches of magma, leading to the generation of earthquake swarms or seismic tremors.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 11","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029602","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029602","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present numerical modeling aimed to explain Deep Long Period (DLP) events occurring in middle-to-lower crust beneath volcanoes and often observed in association with volcanic eruptions or their precursors. We consider a DLP generating mechanism caused by the rapid growth of gas bubbles in response to the slow decompression of H2O–CO2 over-saturated basaltic magma. The nucleation and rapid growth of gas bubbles lead to rapid pressure change in the magma and elastic rebound of the host rocks, radiating seismic waves recorded as DLP events. The magma and host rocks are modeled as Maxwell bodies with different relaxation times and elastic moduli. Simulations of a single sill-shaped intrusion with different parameters demonstrate that realistic amplitudes and frequencies of P and S seismic waves can be obtained when considering intrusions with linear sizes of the order of 100 m. We then consider a case of two closely located sills and model their interaction. We speculate on conditions that can result in consecutive triggering of the bubble growth in multiple closely located batches of magma, leading to the generation of earthquake swarms or seismic tremors.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.