Hsa_circ_0043533 modulates apoptosis and viability of granulosa cells via miR-409-3p/BCL2 and EMT signalling in PCOS: Providing novel perspective of metformin
Jing Ma , Chang Liu , Huimin Zhang , Mingzi Zhao , Wenqian Zhu , Xin Du , Cuifang Hao
{"title":"Hsa_circ_0043533 modulates apoptosis and viability of granulosa cells via miR-409-3p/BCL2 and EMT signalling in PCOS: Providing novel perspective of metformin","authors":"Jing Ma , Chang Liu , Huimin Zhang , Mingzi Zhao , Wenqian Zhu , Xin Du , Cuifang Hao","doi":"10.1016/j.repbio.2024.100955","DOIUrl":null,"url":null,"abstract":"<div><div>Polycystic ovary syndrome (PCOS) represents a significant cause of infertility among women of reproductive age. Studies have established a close association between granulosa cells (GCs) and the abnormal follicle formation and ovulation processes characteristic of PCOS. The interactions among hsa_circ_0043533, miR-409–3p, and BCL2 were verified through luciferase activity assays. In PCOS patients, granulosa cells exhibit notably reduced apoptosis but enhanced growth, leading to their accumulation and the development of polycystic ovaries. The involvement of non-coding RNAs in PCOS has been documented, with elevated levels of hsa_circ_0043533 observed in this condition. A comprehensive series of experiments were conducted to explore the role of hsa_circ_0043533 in PCOS and elucidate its underlying mechanisms. Silencing hsa_circ_0043533 was found to promote apoptosis and hinder the migration, proliferation, and viability of KGN cells. Furthermore, we uncovered the regulatory effects of hsa_circ_0043533 on the miR-409–3p/BCL2 axis and key markers of Epithelial-Mesenchymal Transition (EMT). Additionally, it was observed that metformin modulates the hsa_circ_0043533/miR-409–3p/BCL2 axis. Overall, this study provides novel insights into the molecular mechanisms regulating granulosa cell proliferation and apoptosis in PCOS, further elucidating the molecular pathogenesis of this condition.</div></div>","PeriodicalId":21018,"journal":{"name":"Reproductive biology","volume":"24 4","pages":"Article 100955"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1642431X24001013","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Polycystic ovary syndrome (PCOS) represents a significant cause of infertility among women of reproductive age. Studies have established a close association between granulosa cells (GCs) and the abnormal follicle formation and ovulation processes characteristic of PCOS. The interactions among hsa_circ_0043533, miR-409–3p, and BCL2 were verified through luciferase activity assays. In PCOS patients, granulosa cells exhibit notably reduced apoptosis but enhanced growth, leading to their accumulation and the development of polycystic ovaries. The involvement of non-coding RNAs in PCOS has been documented, with elevated levels of hsa_circ_0043533 observed in this condition. A comprehensive series of experiments were conducted to explore the role of hsa_circ_0043533 in PCOS and elucidate its underlying mechanisms. Silencing hsa_circ_0043533 was found to promote apoptosis and hinder the migration, proliferation, and viability of KGN cells. Furthermore, we uncovered the regulatory effects of hsa_circ_0043533 on the miR-409–3p/BCL2 axis and key markers of Epithelial-Mesenchymal Transition (EMT). Additionally, it was observed that metformin modulates the hsa_circ_0043533/miR-409–3p/BCL2 axis. Overall, this study provides novel insights into the molecular mechanisms regulating granulosa cell proliferation and apoptosis in PCOS, further elucidating the molecular pathogenesis of this condition.
期刊介绍:
An official journal of the Society for Biology of Reproduction and the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn, Poland.
Reproductive Biology is an international, peer-reviewed journal covering all aspects of reproduction in vertebrates. The journal invites original research papers, short communications, review articles and commentaries dealing with reproductive physiology, endocrinology, immunology, molecular and cellular biology, receptor studies, animal breeding as well as andrology, embryology, infertility, assisted reproduction and contraception. Papers from both basic and clinical research will be considered.