Atomic Nb-doping of WS2 for high-performance synaptic transistors in neuromorphic computing.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2024-09-26 DOI:10.1038/s41378-024-00779-1
Kejie Guan, Yinxiao Li, Lin Liu, Fuqin Sun, Yingyi Wang, Zhuo Zheng, Weifan Zhou, Cheng Zhang, Zhengyang Cai, Xiaowei Wang, Simin Feng, Ting Zhang
{"title":"Atomic Nb-doping of WS<sub>2</sub> for high-performance synaptic transistors in neuromorphic computing.","authors":"Kejie Guan, Yinxiao Li, Lin Liu, Fuqin Sun, Yingyi Wang, Zhuo Zheng, Weifan Zhou, Cheng Zhang, Zhengyang Cai, Xiaowei Wang, Simin Feng, Ting Zhang","doi":"10.1038/s41378-024-00779-1","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to the controllable growth and large-area synthesis for high-density integration, interest in employing atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDCs) for synaptic transistors is increasing. In particular, substitutional doping of 2D materials allows flexible modulation of material physical properties, facilitating precise control in defect engineering for eventual synaptic plasticity. In this study, to increase the switch ratio of synaptic transistors, we selectively performed experiments on WS<sub>2</sub> and introduced niobium (Nb) atoms to serve as the channel material. The Nb atoms were substitutionally doped at the W sites, forming a uniform distribution across the entire flakes. The synaptic transistor devices exhibited an improved switch ratio of 10<sup>3</sup>, 100 times larger than that of devices prepared with undoped WS<sub>2</sub>. The Nb atoms in WS<sub>2</sub> play crucial roles in trapping and detrapping electrons. The modulation of channel conductivity achieved through the gate effectively simulates synaptic potentiation, inhibition, and repetitive learning processes. The Nb-WS<sub>2</sub> synaptic transistor achieves 92.30% recognition accuracy on the Modified National Institute of Standards and Technology (MNIST) handwritten digit dataset after 125 training iterations. This study's contribution extends to a pragmatic and accessible atomic doping methodology, elucidating the strategies underlying doping techniques for channel materials in synaptic transistors.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427458/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00779-1","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to the controllable growth and large-area synthesis for high-density integration, interest in employing atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDCs) for synaptic transistors is increasing. In particular, substitutional doping of 2D materials allows flexible modulation of material physical properties, facilitating precise control in defect engineering for eventual synaptic plasticity. In this study, to increase the switch ratio of synaptic transistors, we selectively performed experiments on WS2 and introduced niobium (Nb) atoms to serve as the channel material. The Nb atoms were substitutionally doped at the W sites, forming a uniform distribution across the entire flakes. The synaptic transistor devices exhibited an improved switch ratio of 103, 100 times larger than that of devices prepared with undoped WS2. The Nb atoms in WS2 play crucial roles in trapping and detrapping electrons. The modulation of channel conductivity achieved through the gate effectively simulates synaptic potentiation, inhibition, and repetitive learning processes. The Nb-WS2 synaptic transistor achieves 92.30% recognition accuracy on the Modified National Institute of Standards and Technology (MNIST) handwritten digit dataset after 125 training iterations. This study's contribution extends to a pragmatic and accessible atomic doping methodology, elucidating the strategies underlying doping techniques for channel materials in synaptic transistors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于神经形态计算中高性能突触晶体管的 WS2 原子掺铌。
由于二维过渡金属二卤化物(TMDCs)的可控生长和大面积合成可实现高密度集成,人们对采用原子级薄的二维过渡金属二卤化物(TMDCs)制造突触晶体管的兴趣与日俱增。特别是,二维材料的置换掺杂可以灵活地调节材料的物理特性,便于精确控制缺陷工程,从而实现最终的突触可塑性。在本研究中,为了提高突触晶体管的开关比,我们选择性地在 WS2 上进行了实验,并引入铌(Nb)原子作为沟道材料。铌原子被替代性地掺杂在 W 位点上,在整个薄片上形成均匀分布。这种突触晶体管器件的开关比提高了 103 倍,是用未掺杂 WS2 制备的器件的 100 倍。WS2 中的铌原子在捕获和分离电子方面发挥了关键作用。通过栅极实现的通道电导率调制有效地模拟了突触电位、抑制和重复学习过程。经过 125 次迭代训练后,Nb-WS2 突触晶体管在美国国家标准与技术研究院(MNIST)的手写数字数据集上达到了 92.30% 的识别准确率。这项研究的贡献在于扩展了一种实用、易用的原子掺杂方法,阐明了突触晶体管沟道材料掺杂技术的基本策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
Acoustic black hole effect enhanced micro-manipulator. Ultrasensitive liquid sensor based on an embedded microchannel bulk acoustic wave resonator. Quantitative and spatially resolved detection of multiplexed microRNA from plant tissue via hybridization to hydrogel-bound DNA probes in nanoliter well arrays. Artificial intelligence-enabled multipurpose smart detection in active-matrix electrowetting-on-dielectric digital microfluidics. Overcoming bubble formation in polydimethylsiloxane-made PCR chips: mechanism and elimination with a high-pressure liquid seal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1