Shizhen Xu, Gai Yang, Junfu Chen, Rui Jiao, Ruoqin Wang, Hongyu Yu, Huikai Xie, Xiaoyi Wang
{"title":"Theoretical and experimental investigations of the CMOS compatible Pirani gauges with a temperature compensation model.","authors":"Shizhen Xu, Gai Yang, Junfu Chen, Rui Jiao, Ruoqin Wang, Hongyu Yu, Huikai Xie, Xiaoyi Wang","doi":"10.1038/s41378-024-00832-z","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, a CMOS-compatible Pirani vacuum gauge was proposed featuring enhanced sensitivity, lower detection limit, and high-temperature stability, achieved through the implementation of a surface micromachining method coupled with a temperature compensation strategy. To improve performance, a T-type device with a 1 µm gap was fabricated resulting in an average sensitivity of 1.10 V/lgPa, which was 2.89 times larger than that (0.38 V/lgPa) of a L-type device with a 100 µm gap. Additionally, FEA simulations were conducted, analyzing the influence of heater temperature on sensitivity and the attenuation of sensitivity across varying ambient temperatures. A semi-empirical theoretical mode was derived for performance prediction, demonstrating strong alignment with experimental results, underscoring its effectiveness in compensating for sensitivity attenuation. Building on the foundation, the device's performance under different ambient temperatures was characterized and effectively compensated in two distinct operational modes: constant temperature mode and constant temperature difference mode (the whole range temperature compensation error can be controlled within 2.5%). Finally, the short-time stability (variation level is approximately 1 mV), noise floor (Vrms=384 μV) and detection limit (0.07 Pa @1 Hz) of the device were characterized, confirming its suitability for practical implementation.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"21"},"PeriodicalIF":7.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754640/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00832-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, a CMOS-compatible Pirani vacuum gauge was proposed featuring enhanced sensitivity, lower detection limit, and high-temperature stability, achieved through the implementation of a surface micromachining method coupled with a temperature compensation strategy. To improve performance, a T-type device with a 1 µm gap was fabricated resulting in an average sensitivity of 1.10 V/lgPa, which was 2.89 times larger than that (0.38 V/lgPa) of a L-type device with a 100 µm gap. Additionally, FEA simulations were conducted, analyzing the influence of heater temperature on sensitivity and the attenuation of sensitivity across varying ambient temperatures. A semi-empirical theoretical mode was derived for performance prediction, demonstrating strong alignment with experimental results, underscoring its effectiveness in compensating for sensitivity attenuation. Building on the foundation, the device's performance under different ambient temperatures was characterized and effectively compensated in two distinct operational modes: constant temperature mode and constant temperature difference mode (the whole range temperature compensation error can be controlled within 2.5%). Finally, the short-time stability (variation level is approximately 1 mV), noise floor (Vrms=384 μV) and detection limit (0.07 Pa @1 Hz) of the device were characterized, confirming its suitability for practical implementation.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.