Jorge Adalberto Cayetano De Jesús, Mona Mohamed Mohamed Yasseen Elghandour, Moyosore Joseph Adegbeye, Daniel López Aguirre, José Alejandro Roque-Jimenez, Maximilian Lackner, Abdelfattah Zeidan Mohamed Salem
{"title":"Nano-encapsulation of essential amino acids: ruminal methane, carbon monoxide, hydrogen sulfide and fermentation.","authors":"Jorge Adalberto Cayetano De Jesús, Mona Mohamed Mohamed Yasseen Elghandour, Moyosore Joseph Adegbeye, Daniel López Aguirre, José Alejandro Roque-Jimenez, Maximilian Lackner, Abdelfattah Zeidan Mohamed Salem","doi":"10.1186/s13568-024-01767-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the effect of nano-encapsulation of four essential amino acids (AA), threonine, methionine, tryptophan, and lysine on in vitro ruminal total gas, methane, carbon monoxide, and hydrogen sulfide production as well as the rumen fermentation profile in cattle. The highest (P < 0.001) rate and asymptotic gas production after 48 h of incubation was observed in the diets that had threonine, followed by lysine, methionine, and tryptophan. Asymptotic methane gas production decreased in the following order: threonine > lysine > tryptophan > methionine (P < 0.0001) and the rate of production per hour followed the same trend (P = 0.0259). CH<sub>4</sub> parameters showed that in 4 h, 24 h, and 48 h of incubation the lowest methane production was obtained in the diet with methionine (P < 0.05) and the highest one in diet supplemented with threonine. Methane fractions showed that methionine-containing diets resulted in more (P < 0.05) metabolizable energy versus methane, followed by tryptophan-containing, and then lysine-containing diets. Methionine-fortified diets seem to be the most eco-friendly among those studied regarding methane output. However, based on methane, CO, and H<sub>2</sub>S output as well as the rumen fermentation profile nano-encapsulated lysine is recommended for use in ruminant nutrition.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"14 1","pages":"109"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442736/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-024-01767-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to evaluate the effect of nano-encapsulation of four essential amino acids (AA), threonine, methionine, tryptophan, and lysine on in vitro ruminal total gas, methane, carbon monoxide, and hydrogen sulfide production as well as the rumen fermentation profile in cattle. The highest (P < 0.001) rate and asymptotic gas production after 48 h of incubation was observed in the diets that had threonine, followed by lysine, methionine, and tryptophan. Asymptotic methane gas production decreased in the following order: threonine > lysine > tryptophan > methionine (P < 0.0001) and the rate of production per hour followed the same trend (P = 0.0259). CH4 parameters showed that in 4 h, 24 h, and 48 h of incubation the lowest methane production was obtained in the diet with methionine (P < 0.05) and the highest one in diet supplemented with threonine. Methane fractions showed that methionine-containing diets resulted in more (P < 0.05) metabolizable energy versus methane, followed by tryptophan-containing, and then lysine-containing diets. Methionine-fortified diets seem to be the most eco-friendly among those studied regarding methane output. However, based on methane, CO, and H2S output as well as the rumen fermentation profile nano-encapsulated lysine is recommended for use in ruminant nutrition.
期刊介绍:
AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.