Stable individual differences from dynamic patterns of function: brain network flexibility predicts openness/intellect, intelligence, and psychoticism.

IF 2.9 2区 医学 Q2 NEUROSCIENCES Cerebral cortex Pub Date : 2024-09-03 DOI:10.1093/cercor/bhae391
Tyler A Sassenberg, Adam Safron, Colin G DeYoung
{"title":"Stable individual differences from dynamic patterns of function: brain network flexibility predicts openness/intellect, intelligence, and psychoticism.","authors":"Tyler A Sassenberg, Adam Safron, Colin G DeYoung","doi":"10.1093/cercor/bhae391","DOIUrl":null,"url":null,"abstract":"<p><p>A growing understanding of the nature of brain function has led to increased interest in interpreting the properties of large-scale brain networks. Methodological advances in network neuroscience provide means to decompose these networks into smaller functional communities and measure how they reconfigure over time as an index of their dynamic and flexible properties. Recent evidence has identified associations between flexibility and a variety of traits pertaining to complex cognition including creativity and working memory. The present study used measures of dynamic resting-state functional connectivity in data from the Human Connectome Project (n = 994) to test associations with Openness/Intellect, general intelligence, and psychoticism, three traits that involve flexible cognition. Using a machine-learning cross-validation approach, we identified reliable associations of intelligence with cohesive flexibility of parcels in large communities across the cortex, of psychoticism with disjoint flexibility, and of Openness/Intellect with overall flexibility among parcels in smaller communities. These findings are reasonably consistent with previous theories of the neural correlates of these traits and help to expand on previous associations of behavior with dynamic functional connectivity, in the context of broad personality dimensions.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae391","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A growing understanding of the nature of brain function has led to increased interest in interpreting the properties of large-scale brain networks. Methodological advances in network neuroscience provide means to decompose these networks into smaller functional communities and measure how they reconfigure over time as an index of their dynamic and flexible properties. Recent evidence has identified associations between flexibility and a variety of traits pertaining to complex cognition including creativity and working memory. The present study used measures of dynamic resting-state functional connectivity in data from the Human Connectome Project (n = 994) to test associations with Openness/Intellect, general intelligence, and psychoticism, three traits that involve flexible cognition. Using a machine-learning cross-validation approach, we identified reliable associations of intelligence with cohesive flexibility of parcels in large communities across the cortex, of psychoticism with disjoint flexibility, and of Openness/Intellect with overall flexibility among parcels in smaller communities. These findings are reasonably consistent with previous theories of the neural correlates of these traits and help to expand on previous associations of behavior with dynamic functional connectivity, in the context of broad personality dimensions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自动态功能模式的稳定个体差异:大脑网络的灵活性可预测开放性/智力、智力和精神病。
随着人们对大脑功能本质的认识不断加深,人们对解读大规模大脑网络特性的兴趣也与日俱增。网络神经科学在方法论上的进步提供了将这些网络分解为更小的功能群落并测量它们如何随时间重组的方法,以此作为其动态和灵活特性的指标。最近有证据表明,灵活性与创造力和工作记忆等各种复杂认知特征之间存在关联。本研究利用人类连接组项目数据(n = 994)中的动态静息态功能连接性测量来测试开放性/智力、一般智力和精神病性这三种涉及灵活认知的特征之间的关联。利用机器学习交叉验证方法,我们确定了智力与大脑皮层大型群落中包裹的内聚灵活性、精神病性与不连续性灵活性以及开放性/智力与较小群落中包裹的整体灵活性之间的可靠关联。这些发现与之前关于这些特质的神经相关性理论相当一致,并有助于在广泛人格维度的背景下扩展之前行为与动态功能连接的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
期刊最新文献
Individual differences in functional connectivity during suppression of imagined threat. When emotion and time meet from human and rodent perspectives: a central role for the amygdala? Introspective psychophysics for the study of subjective experience. Examining threat responses through a developmental lens. Causal relationship between cortical structural changes and onset of anxiety disorder: evidence from Mendelian randomization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1