Zoe Leyva-Acosta, Eduardo Acuña Yeomans, Francisco Hernandez-Quiroz
{"title":"An Additively Optimal Interpreter for Approximating Kolmogorov Prefix Complexity.","authors":"Zoe Leyva-Acosta, Eduardo Acuña Yeomans, Francisco Hernandez-Quiroz","doi":"10.3390/e26090802","DOIUrl":null,"url":null,"abstract":"<p><p>We study practical approximations of Kolmogorov prefix complexity (<i>K</i>) using IMP2, a high-level programming language. Our focus is on investigating the optimality of the interpreter for this language as the reference machine for the Coding Theorem Method (CTM). This method is designed to address applications of algorithmic complexity that differ from the popular traditional lossless compression approach based on the principles of algorithmic probability. The chosen model of computation is proven to be suitable for this task, and a comparison to other models and methods is conducted. Our findings show that CTM approximations using our model do not always correlate with the results from lower-level models of computation. This suggests that some models may require a larger program space to converge to Levin's universal distribution. Furthermore, we compare the CTM with an upper bound on Kolmogorov complexity and find a strong correlation, supporting the CTM's validity as an approximation method with finer-grade resolution of <i>K</i>.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431414/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26090802","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study practical approximations of Kolmogorov prefix complexity (K) using IMP2, a high-level programming language. Our focus is on investigating the optimality of the interpreter for this language as the reference machine for the Coding Theorem Method (CTM). This method is designed to address applications of algorithmic complexity that differ from the popular traditional lossless compression approach based on the principles of algorithmic probability. The chosen model of computation is proven to be suitable for this task, and a comparison to other models and methods is conducted. Our findings show that CTM approximations using our model do not always correlate with the results from lower-level models of computation. This suggests that some models may require a larger program space to converge to Levin's universal distribution. Furthermore, we compare the CTM with an upper bound on Kolmogorov complexity and find a strong correlation, supporting the CTM's validity as an approximation method with finer-grade resolution of K.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.