Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2025-02-19 DOI:10.3390/e27020215
Camille Godin, Matthew R Krause, Pedro G Vieira, Christopher C Pack, Jean-Philippe Thivierge
{"title":"Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity.","authors":"Camille Godin, Matthew R Krause, Pedro G Vieira, Christopher C Pack, Jean-Philippe Thivierge","doi":"10.3390/e27020215","DOIUrl":null,"url":null,"abstract":"<p><p>Interactions between excitatory and inhibitory neurons in the cerebral cortex give rise to different regimes of activity and modulate brain oscillations. A prominent regime in the cortex is the inhibition-stabilized network (ISN), defined by strong recurrent excitation balanced by inhibition. While theoretical models have captured the response of brain circuits in the ISN state, their connectivity is typically hard-wired, leaving unanswered how a network may self-organize to an ISN state and dynamically switch between ISN and non-ISN states to modulate oscillations. Here, we introduce a mean-rate model of coupled Wilson-Cowan equations, link ISN and non-ISN states to Kolmogorov-Sinai entropy, and demonstrate how homeostatic plasticity (HP) allows the network to express both states depending on its level of tonic activity. This mechanism enables the model to capture a broad range of experimental effects, including (i) a paradoxical decrease in inhibitory activity, (ii) a phase offset between excitation and inhibition, and (iii) damped gamma oscillations. Further, the model accounts for experimental work on asynchronous quenching, where an external input suppresses intrinsic oscillations. Together, findings show that oscillatory activity is modulated by the dynamical regime of the network under the control of HP, thus advancing a framework that bridges neural dynamics, entropy, oscillations, and synaptic plasticity.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854103/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27020215","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Interactions between excitatory and inhibitory neurons in the cerebral cortex give rise to different regimes of activity and modulate brain oscillations. A prominent regime in the cortex is the inhibition-stabilized network (ISN), defined by strong recurrent excitation balanced by inhibition. While theoretical models have captured the response of brain circuits in the ISN state, their connectivity is typically hard-wired, leaving unanswered how a network may self-organize to an ISN state and dynamically switch between ISN and non-ISN states to modulate oscillations. Here, we introduce a mean-rate model of coupled Wilson-Cowan equations, link ISN and non-ISN states to Kolmogorov-Sinai entropy, and demonstrate how homeostatic plasticity (HP) allows the network to express both states depending on its level of tonic activity. This mechanism enables the model to capture a broad range of experimental effects, including (i) a paradoxical decrease in inhibitory activity, (ii) a phase offset between excitation and inhibition, and (iii) damped gamma oscillations. Further, the model accounts for experimental work on asynchronous quenching, where an external input suppresses intrinsic oscillations. Together, findings show that oscillatory activity is modulated by the dynamical regime of the network under the control of HP, thus advancing a framework that bridges neural dynamics, entropy, oscillations, and synaptic plasticity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity. Fault Root Cause Analysis Based on Liang-Kleeman Information Flow and Graphical Lasso. Lacunary Series and Strong Approximation. Research on Development Progress and Test Evaluation of Post-Quantum Cryptography. Exploring Causal Network Complexity in Industrial Linkages: A Comparative Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1