Golf Club Selection with AI-Based Game Planning.

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-09-19 DOI:10.3390/e26090800
Mehdi Khazaeli, Leili Javadpour
{"title":"Golf Club Selection with AI-Based Game Planning.","authors":"Mehdi Khazaeli, Leili Javadpour","doi":"10.3390/e26090800","DOIUrl":null,"url":null,"abstract":"<p><p>In the dynamic realm of golf, where every swing can make the difference between victory and defeat, the strategic selection of golf clubs has become a crucial factor in determining the outcome of a game. Advancements in artificial intelligence have opened new avenues for enhancing the decision-making process, empowering golfers to achieve optimal performance on the course. In this paper, we introduce an AI-based game planning system that assists players in selecting the best club for a given scenario. The system considers factors such as distance, terrain, wind strength and direction, and quality of lie. A rule-based model provides the four best club options based on the player's maximum shot data for each club. The player picks a club, shot, and target and a probabilistic classification model identifies whether the shot represents a birdie opportunity, par zone, bogey zone, or worse. The results of our model show that taking into account factors such as terrain and atmospheric features increases the likelihood of a better shot outcome.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 9","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431687/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26090800","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the dynamic realm of golf, where every swing can make the difference between victory and defeat, the strategic selection of golf clubs has become a crucial factor in determining the outcome of a game. Advancements in artificial intelligence have opened new avenues for enhancing the decision-making process, empowering golfers to achieve optimal performance on the course. In this paper, we introduce an AI-based game planning system that assists players in selecting the best club for a given scenario. The system considers factors such as distance, terrain, wind strength and direction, and quality of lie. A rule-based model provides the four best club options based on the player's maximum shot data for each club. The player picks a club, shot, and target and a probabilistic classification model identifies whether the shot represents a birdie opportunity, par zone, bogey zone, or worse. The results of our model show that taking into account factors such as terrain and atmospheric features increases the likelihood of a better shot outcome.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于人工智能的游戏规划选择高尔夫球杆。
在充满活力的高尔夫领域,每一次挥杆都可能决定胜负,因此战略性地选择高尔夫球杆已成为决定比赛结果的关键因素。人工智能的进步为增强决策过程开辟了新途径,使高尔夫球手在球场上实现最佳表现。在本文中,我们介绍了一种基于人工智能的比赛规划系统,该系统可帮助球员在特定情况下选择最佳球杆。该系统考虑的因素包括距离、地形、风力和风向以及杆位质量。一个基于规则的模型会根据球员对每支球杆的最大击球数据提供四种最佳球杆选择。球员选择球杆、击球和目标后,概率分类模型将确定该击球是小鸟球机会、标准杆区域、柏忌区还是更差。我们的模型结果表明,将地形和大气特征等因素考虑在内,会增加获得更好击球结果的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Assessment of Nuclear Fusion Reaction Spontaneity via Engineering Thermodynamics. A Multilayer Nonlinear Permutation Framework and Its Demonstration in Lightweight Image Encryption. A Synergistic Perspective on Multivariate Computation and Causality in Complex Systems. Adaptive Privacy-Preserving Coded Computing with Hierarchical Task Partitioning. Advanced Exergy-Based Optimization of a Polygeneration System with CO2 as Working Fluid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1