Giovanni Veronesi, Sara De Matteis, Camillo Silibello, Emanuele M Giusti, Walter Ageno, Marco M Ferrario
{"title":"Interactive Effects of Long-term Exposure to Air Pollutants on SARS-CoV-2 Infection and Severity: A Northern Italian Population-based Cohort Study.","authors":"Giovanni Veronesi, Sara De Matteis, Camillo Silibello, Emanuele M Giusti, Walter Ageno, Marco M Ferrario","doi":"10.1097/EDE.0000000000001792","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We examined interactions, to our knowledge not yet explored, between long-term exposures to particulate matter (PM 10 ) with nitrogen dioxide (NO 2 ) and ozone (O 3 ) on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity and severity.</p><p><strong>Methods: </strong>We followed 709,864 adult residents of Varese Province from 1 February 2020 until the first positive test, COVID-19 hospitalization, or death, up to 31 December 2020. We estimated residential annual means of PM 10 , NO 2 , and O 3 in 2019 from chemical transport and random-forest models. We estimated the interactive effects of pollutants with urbanicity on SARS-CoV-2 infectivity, hospitalization, and mortality endpoints using Cox regression models adjusted for socio-demographic factors and comorbidities, and additional cases due to interactions using Poisson models.</p><p><strong>Results: </strong>In total 41,065 individuals were infected, 5203 were hospitalized and 1543 died from COVID-19 during follow-up. Mean PM 10 was 1.6 times higher and NO 2 2.6 times higher than WHO limits, with wide gradients between urban and nonurban areas. PM 10 and NO 2 were positively associated with SARS-CoV-2 infectivity and mortality, and PM 10 with hospitalizations in urban areas. Interaction analyses estimated that the effect of PM 10 (per 3.5 µg/m 3 ) on infectivity was strongest in urban areas [hazard ratio (HR) = 1.12; 95% CI =1.09, 1.16], corresponding to 854 additional cases per 100,000 person-years, and in areas at high NO 2 co-exposure (HR = 1.15; 1.08, 1.22). At higher levels of PM 10 co-exposure, the protective association of O 3 reversed (HR =1.32, 1.17, 1.49), yielding 278 additional cases per µg/m 3 increase in O 3 . We estimated similar interactive effects for severity endpoints.</p><p><strong>Conclusions: </strong>We estimate that interactive effects between pollutants exacerbated the burden of the SARS-CoV-2 pandemic in urban areas.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":"11-19"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001792","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: We examined interactions, to our knowledge not yet explored, between long-term exposures to particulate matter (PM 10 ) with nitrogen dioxide (NO 2 ) and ozone (O 3 ) on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity and severity.
Methods: We followed 709,864 adult residents of Varese Province from 1 February 2020 until the first positive test, COVID-19 hospitalization, or death, up to 31 December 2020. We estimated residential annual means of PM 10 , NO 2 , and O 3 in 2019 from chemical transport and random-forest models. We estimated the interactive effects of pollutants with urbanicity on SARS-CoV-2 infectivity, hospitalization, and mortality endpoints using Cox regression models adjusted for socio-demographic factors and comorbidities, and additional cases due to interactions using Poisson models.
Results: In total 41,065 individuals were infected, 5203 were hospitalized and 1543 died from COVID-19 during follow-up. Mean PM 10 was 1.6 times higher and NO 2 2.6 times higher than WHO limits, with wide gradients between urban and nonurban areas. PM 10 and NO 2 were positively associated with SARS-CoV-2 infectivity and mortality, and PM 10 with hospitalizations in urban areas. Interaction analyses estimated that the effect of PM 10 (per 3.5 µg/m 3 ) on infectivity was strongest in urban areas [hazard ratio (HR) = 1.12; 95% CI =1.09, 1.16], corresponding to 854 additional cases per 100,000 person-years, and in areas at high NO 2 co-exposure (HR = 1.15; 1.08, 1.22). At higher levels of PM 10 co-exposure, the protective association of O 3 reversed (HR =1.32, 1.17, 1.49), yielding 278 additional cases per µg/m 3 increase in O 3 . We estimated similar interactive effects for severity endpoints.
Conclusions: We estimate that interactive effects between pollutants exacerbated the burden of the SARS-CoV-2 pandemic in urban areas.
期刊介绍:
Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.