Parameterization of Beta Distributions for Bias Parameters of Binary Exposure Misclassification in Probabilistic Bias Analysis.

IF 4.7 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH Epidemiology Pub Date : 2025-03-01 Epub Date: 2024-11-26 DOI:10.1097/EDE.0000000000001818
Qi Zhang, Richard F MacLehose, Lindsay J Collin, Thomas P Ahern, Timothy L Lash
{"title":"Parameterization of Beta Distributions for Bias Parameters of Binary Exposure Misclassification in Probabilistic Bias Analysis.","authors":"Qi Zhang, Richard F MacLehose, Lindsay J Collin, Thomas P Ahern, Timothy L Lash","doi":"10.1097/EDE.0000000000001818","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To account for misclassification of dichotomous variables using probabilistic bias analysis, beta distributions are often assigned to bias parameters (e.g., positive and negative predictive values) based on data from an internal validation substudy. Due to the small sample size of validation substudies, zero-cell frequencies can occur. In these scenarios, it may be helpful to assign prior distributions or apply continuity corrections to the predictive value estimates.</p><p><strong>Methods: </strong>We simulated cohort studies of varying sizes, with a binary exposure and outcome and a true risk ratio (RR) = 2.0, as well as internal validation substudies, to account for exposure misclassification. We conducted bias adjustment under five approaches assigning prior distributions to the positive and negative predictive value parameters: (1) conventional method (i.e., no prior), (2) uniform prior beta ( α = 1, β = 1), (3) Jeffreys prior beta ( α = 0.5, β = 0.5), (4) using Jeffreys prior as a continuity correction only when zero cells occurred, and (5) using the uniform prior as a continuity correction only when zero cells occurred. We evaluated performance by measuring coverage probability, bias, and mean squared error.</p><p><strong>Results: </strong>For sparse validation data, methods (2)-(5) all had better coverage and lower mean squared error than the conventional method, with the uniform prior (2) yielding the best performance. However, little difference between methods was observed when the validation substudy did not contain zero cells.</p><p><strong>Conclusion: </strong>If sparse data are expected in a validation substudy, using a uniform prior for the beta distribution of bias parameters can improve the validity of bias-adjusted measures.</p>","PeriodicalId":11779,"journal":{"name":"Epidemiology","volume":" ","pages":"237-244"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785477/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/EDE.0000000000001818","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Background: To account for misclassification of dichotomous variables using probabilistic bias analysis, beta distributions are often assigned to bias parameters (e.g., positive and negative predictive values) based on data from an internal validation substudy. Due to the small sample size of validation substudies, zero-cell frequencies can occur. In these scenarios, it may be helpful to assign prior distributions or apply continuity corrections to the predictive value estimates.

Methods: We simulated cohort studies of varying sizes, with a binary exposure and outcome and a true risk ratio (RR) = 2.0, as well as internal validation substudies, to account for exposure misclassification. We conducted bias adjustment under five approaches assigning prior distributions to the positive and negative predictive value parameters: (1) conventional method (i.e., no prior), (2) uniform prior beta ( α = 1, β = 1), (3) Jeffreys prior beta ( α = 0.5, β = 0.5), (4) using Jeffreys prior as a continuity correction only when zero cells occurred, and (5) using the uniform prior as a continuity correction only when zero cells occurred. We evaluated performance by measuring coverage probability, bias, and mean squared error.

Results: For sparse validation data, methods (2)-(5) all had better coverage and lower mean squared error than the conventional method, with the uniform prior (2) yielding the best performance. However, little difference between methods was observed when the validation substudy did not contain zero cells.

Conclusion: If sparse data are expected in a validation substudy, using a uniform prior for the beta distribution of bias parameters can improve the validity of bias-adjusted measures.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
概率偏差分析中二元暴露误分类偏差参数的贝塔分布参数化。
为了利用概率偏倚分析来解释二分变量的错误分类,通常会根据内部验证子研究的数据为偏倚参数(如 PPV 和 NPV)分配贝塔分布。由于验证子研究的样本量较小,可能会出现零单元频率。在这种情况下,分配先验分布或对预测值估计应用连续性校正可能会有所帮助。我们模拟了不同规模的队列研究、二元暴露和结果、真实风险比 (RR) = 2.0 以及内部验证子研究,以考虑暴露误分类。我们采用五种方法对 NPV 和 PPV 参数的先验分布进行了偏差调整:(1) 传统方法(即无先验);(2) 均匀先验贝塔(α = 1,β = 1);(3) Jeffreys 先验贝塔(α = 0.5,β = 0.5);(4) 仅在出现零单元时使用 Jeffreys 先验作为连续性校正;(5) 仅在出现零单元时使用均匀先验作为连续性校正。我们通过测量覆盖概率、偏差和均方误差来评估性能。对于稀疏验证数据,(2)-(5) 方法都比传统方法具有更好的覆盖率和更低的均方误差,其中均匀先验 (2) 方法的性能最好。然而,当验证子研究不包含零单元时,不同方法之间的差异很小。如果预计验证子研究中的数据稀疏,那么对偏倚参数的贝塔分布使用均匀先验可以提高偏倚调整测量的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epidemiology
Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
6.70
自引率
3.70%
发文量
177
审稿时长
6-12 weeks
期刊介绍: Epidemiology publishes original research from all fields of epidemiology. The journal also welcomes review articles and meta-analyses, novel hypotheses, descriptions and applications of new methods, and discussions of research theory or public health policy. We give special consideration to papers from developing countries.
期刊最新文献
Socioeconomic Status, Smoking, and Lung Cancer: Mediation and Bias Analysis in the SYNERGY Study. Low-level PM 2.5 Exposure, Cardiovascular and Nonaccidental Mortality, and Related Health Disparities in 12 US States. Influenza Activity and Preterm Birth in the Atlanta Metropolitan Area: A Time-Series Analysis from 2010 to 2017. Parameterization of Beta Distributions for Bias Parameters of Binary Exposure Misclassification in Probabilistic Bias Analysis. Back to Basics: What Descriptive Epidemiology Can Teach Us About the Recent Rise in Firearm Homicide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1