A framework integrating affinity propagation algorithm and spatial bivariate analysis for enhanced identification and localisation of soil heavy metals pollution sources.
{"title":"A framework integrating affinity propagation algorithm and spatial bivariate analysis for enhanced identification and localisation of soil heavy metals pollution sources.","authors":"Feng Zhang, Shenglu Zhou, Zhenyi Jia, Xuefeng Xie, Mingxing Xu, Shaohua Wu","doi":"10.1007/s10653-024-02246-2","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate identification of pollutant sources and their spatial distribution is crucial for mitigating soil heavy metals (SHMs) pollution. However, the receptor model struggles to effectively categorize pollutant sources and pinpoint their locations and dispersion trends. We propose a novel comprehensive framework that combines a receptor model, random forest (RF), affinity propagation (AP) algorithm, and bivariate local indicator of spatial association (BLISA), to optimize the traditional approach for tracing SHMs sources in industrial regions. We apportioned SHMs sources using a receptor model combined with RF, while BLISA combined with AP methods were employed to accurately locate the source areas and identify their dispersion tendencies. The results revealed that SHMs originated from mixed sources of equipment manufacturing agglomeration and agricultural activities (59.0%), geological background (30.5%), and emissions from heavily-polluting industries (10.5%). The pollution sources of soil Cd and Pb were located near specific industries, showing characteristics of multi-site concurrent pollution diffusion influenced by their proximity to industrial sites. The spatial distribution of Cr, Cu, and Zn sources was concentrated in high-density urban industrial areas, transitioning from point to nonpoint sources, with diffusion patterns influenced by the spatial agglomeration effect of industries. Our enhanced framework accurately identifies the location of SHMs sources and their dispersion tendencies, thereby improving regional soil pollution management.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"46 11","pages":"455"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02246-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate identification of pollutant sources and their spatial distribution is crucial for mitigating soil heavy metals (SHMs) pollution. However, the receptor model struggles to effectively categorize pollutant sources and pinpoint their locations and dispersion trends. We propose a novel comprehensive framework that combines a receptor model, random forest (RF), affinity propagation (AP) algorithm, and bivariate local indicator of spatial association (BLISA), to optimize the traditional approach for tracing SHMs sources in industrial regions. We apportioned SHMs sources using a receptor model combined with RF, while BLISA combined with AP methods were employed to accurately locate the source areas and identify their dispersion tendencies. The results revealed that SHMs originated from mixed sources of equipment manufacturing agglomeration and agricultural activities (59.0%), geological background (30.5%), and emissions from heavily-polluting industries (10.5%). The pollution sources of soil Cd and Pb were located near specific industries, showing characteristics of multi-site concurrent pollution diffusion influenced by their proximity to industrial sites. The spatial distribution of Cr, Cu, and Zn sources was concentrated in high-density urban industrial areas, transitioning from point to nonpoint sources, with diffusion patterns influenced by the spatial agglomeration effect of industries. Our enhanced framework accurately identifies the location of SHMs sources and their dispersion tendencies, thereby improving regional soil pollution management.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.