Prophenoloxidase-activating system plays a crucial role in innate immune responses to Enterocytozoon hepatopenaei infection in shrimp Litopenaeus vannamei
{"title":"Prophenoloxidase-activating system plays a crucial role in innate immune responses to Enterocytozoon hepatopenaei infection in shrimp Litopenaeus vannamei","authors":"Pongsakorn Sukonthamarn, Pavarisa Wongvises, Nutthapon Sangklai, Pattana Jaroenlak, Anchalee Tassanakajon","doi":"10.1016/j.fsi.2024.109925","DOIUrl":null,"url":null,"abstract":"<div><div>The microsporidian <em>Enterocytozoon hepatopenaei</em> (EHP) is an emerging pathogen that causes high economic losses in shrimp industry. The knowledge on shrimp's immune response to EHP infection to properly handle this outbreak is poorly understood. The prophenoloxidase (proPO)-activating system is an important invertebrate innate immune systems that produces melanin and toxic reactive intermediates against invading pathogens. In this study, we investigated the role of the proPO-activating system during EHP infection in the Pacific white shrimp <em>Litopenaeus vannamei</em>. The expression of proPO-activating system-related genes was highly responded to the EHP infection and the hemolymph PO activity was significantly increased and tightly regulated during the infection. The melanization products, generated by the proPO activation, exhibit <em>in vitro</em> cytotoxicity effect on the EHP spores and inhibit spore germination. Suppression of the proPO-activating system by RNA interference significantly decreased hemolymph PO activity and resulted in increased EHP copy number and reduced expression of several genes in the JAK/STAT and Toll signaling pathways as well as antimicrobial peptides. Furthermore, suppression of the proPO system also reduced hemocyte adhesion and encapsulation of the EHP spores. These results demonstrated that the proPO system plays a vital role in reducing EHP infectivity and cross-talks with other humoral and cellular responses to coordinately defend the EHP infection.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"154 ","pages":"Article 109925"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464824005709","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The microsporidian Enterocytozoon hepatopenaei (EHP) is an emerging pathogen that causes high economic losses in shrimp industry. The knowledge on shrimp's immune response to EHP infection to properly handle this outbreak is poorly understood. The prophenoloxidase (proPO)-activating system is an important invertebrate innate immune systems that produces melanin and toxic reactive intermediates against invading pathogens. In this study, we investigated the role of the proPO-activating system during EHP infection in the Pacific white shrimp Litopenaeus vannamei. The expression of proPO-activating system-related genes was highly responded to the EHP infection and the hemolymph PO activity was significantly increased and tightly regulated during the infection. The melanization products, generated by the proPO activation, exhibit in vitro cytotoxicity effect on the EHP spores and inhibit spore germination. Suppression of the proPO-activating system by RNA interference significantly decreased hemolymph PO activity and resulted in increased EHP copy number and reduced expression of several genes in the JAK/STAT and Toll signaling pathways as well as antimicrobial peptides. Furthermore, suppression of the proPO system also reduced hemocyte adhesion and encapsulation of the EHP spores. These results demonstrated that the proPO system plays a vital role in reducing EHP infectivity and cross-talks with other humoral and cellular responses to coordinately defend the EHP infection.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.