Reverse Solute Diffusion Enhances Sludge Dewatering in Dead-End Forward Osmosis.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL Membranes Pub Date : 2024-09-18 DOI:10.3390/membranes14090196
Da-Qi Cao, Shi-Cheng Lei, Hui Liu, Yan Jin, Yun-Feng Wu, Yuehua Cui, Rongling Wu
{"title":"Reverse Solute Diffusion Enhances Sludge Dewatering in Dead-End Forward Osmosis.","authors":"Da-Qi Cao, Shi-Cheng Lei, Hui Liu, Yan Jin, Yun-Feng Wu, Yuehua Cui, Rongling Wu","doi":"10.3390/membranes14090196","DOIUrl":null,"url":null,"abstract":"<p><p>Wastewater treatment plants produce high quantities of excess sludge. However, traditional sludge dewatering technology has high energy consumption and occupies a large area. Dead-end forward osmosis (DEFO) is an efficient and energy-saving deep dewatering technology for sludge. In this study, the reverse osmosis of salt ions in the draw solution was used to change the sludge cake structure and further reduce its moisture content in cake by releasing the bound water in cell. Three salts, NaCl, KCl, and CaCl<sub>2</sub>, were added to the excess sludge feed solution to explore the roles of the reverse osmosis of draw solutes in DEFO. When the added quantities of NaCl and CaCl<sub>2</sub> were 15 and 10 mM, respectively, the moisture content of the sludge after dewatering decreased from 98.1% to 79.7% and 67.3%, respectively. However, KCl did not improve the sludge dewatering performance because of the \"high K and low Na\" phenomenon in biological cells. The water flux increased significantly for the binary draw solute involving NaCl and CaCl<sub>2</sub> compared to the single draw solute. The extracellular polymer substances in the sludge changed the structure of the filter cake to improve the formation of water channels and decrease osmosis resistance, resulting in an increase in sludge dewatering efficiency. These findings provide support for improving the sludge dewatering performance of DEFO.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433884/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14090196","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wastewater treatment plants produce high quantities of excess sludge. However, traditional sludge dewatering technology has high energy consumption and occupies a large area. Dead-end forward osmosis (DEFO) is an efficient and energy-saving deep dewatering technology for sludge. In this study, the reverse osmosis of salt ions in the draw solution was used to change the sludge cake structure and further reduce its moisture content in cake by releasing the bound water in cell. Three salts, NaCl, KCl, and CaCl2, were added to the excess sludge feed solution to explore the roles of the reverse osmosis of draw solutes in DEFO. When the added quantities of NaCl and CaCl2 were 15 and 10 mM, respectively, the moisture content of the sludge after dewatering decreased from 98.1% to 79.7% and 67.3%, respectively. However, KCl did not improve the sludge dewatering performance because of the "high K and low Na" phenomenon in biological cells. The water flux increased significantly for the binary draw solute involving NaCl and CaCl2 compared to the single draw solute. The extracellular polymer substances in the sludge changed the structure of the filter cake to improve the formation of water channels and decrease osmosis resistance, resulting in an increase in sludge dewatering efficiency. These findings provide support for improving the sludge dewatering performance of DEFO.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反向溶质扩散增强了死端正向渗透中的污泥脱水。
污水处理厂会产生大量过剩污泥。然而,传统的污泥脱水技术能耗高、占地面积大。死端正向渗透(DEFO)是一种高效节能的污泥深度脱水技术。本研究利用汲取液中盐离子的反渗透作用改变污泥饼结构,通过释放细胞中的结合水进一步降低污泥饼中的含水率。在过量的污泥进料溶液中加入 NaCl、KCl 和 CaCl2 三种盐,以探讨汲取溶质反渗透在 DEFO 中的作用。当 NaCl 和 CaCl2 的添加量分别为 15 mM 和 10 mM 时,脱水后污泥的含水率分别从 98.1% 降至 79.7% 和 67.3%。然而,由于生物细胞中存在 "高 K 低 Na "现象,KCl 并没有改善污泥脱水性能。与单一汲取溶质相比,NaCl 和 CaCl2 的二元汲取溶质的水通量明显增加。污泥中的细胞外高分子物质改变了滤饼的结构,改善了水通道的形成,降低了渗透阻力,从而提高了污泥脱水效率。这些发现为提高 DEFO 的污泥脱水性能提供了支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
The Application of TiO2/ZrO2-Modified Nanocomposite PES Membrane for Improved Permeability of Textile Dye in Water. Computational Fluid Dynamics Modelling of Hydrogen Production via Water Splitting in Oxygen Membrane Reactors. Fouling of Reverse Osmosis (RO) and Nanofiltration (NF) Membranes by Low Molecular Weight Organic Compounds (LMWOCs), Part 1: Fundamentals and Mechanism. The Influence of Cholesterol on Membrane Targeted Bioactive Peptides: Modulating Peptide Activity Through Changes in Bilayer Biophysical Properties. Cell Type-Specific Anti- and Pro-Oxidative Effects of Punica granatum L. Ellagitannins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1