Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses.

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL Membranes Pub Date : 2025-01-16 DOI:10.3390/membranes15010033
Ivette Montero-Guadarrama, Claudia Muro Urista, Gabriela Roa-Morales, Edith Erialia Gutiérrez Segura, Vianney Díaz-Blancas, Germán Eduardo Dévora-Isiordia, Jesús Álvarez-Sánchez
{"title":"Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses.","authors":"Ivette Montero-Guadarrama, Claudia Muro Urista, Gabriela Roa-Morales, Edith Erialia Gutiérrez Segura, Vianney Díaz-Blancas, Germán Eduardo Dévora-Isiordia, Jesús Álvarez-Sánchez","doi":"10.3390/membranes15010033","DOIUrl":null,"url":null,"abstract":"<p><p>Technical and economic criteria were used to evaluate the feasibility of the treatment of an industrial effluent (10 m<sup>3</sup>/h) for water recovery and reuse. The treatment evaluation included the following: (1) effluent characteristic determination; (2) selection and evaluation of the effluent treatment at lab scale, establishing operating conditions and process efficiency; (3) scaling up the treatment process to the industrial level; (4) treatment plant design and commercial availability analysis of the required equipment; and (5) the costs of the inversion and operation of the plant treatment, cost/m<sup>3</sup> for water recovery, and time of investment recovery. The physicochemical characteristics of the effluent exposed the polluted wastewater with sodium chloride salts and colourants, predominating a mixture of tartrazine, Red 40, and brilliant blue from the synthesis of food additives. Other contributions of organic compounds and salts could be in minor content. According to the effluent conditions, a coupled process, integrated with ozonation and reverse osmosis, was indicated to be a treatment for water recovery. Scaling up the plant treatment design resulted in 130 m<sup>2</sup> of area, producing 7.7 m<sup>3</sup>/h of clean water. The cost of the effluent treatment was 1.4 USD/m<sup>3</sup>, with an inversion return of 3.4 years and cost investment of USD 860,407. The treatment process resulted a viable project for water recovery.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"15 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes15010033","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Technical and economic criteria were used to evaluate the feasibility of the treatment of an industrial effluent (10 m3/h) for water recovery and reuse. The treatment evaluation included the following: (1) effluent characteristic determination; (2) selection and evaluation of the effluent treatment at lab scale, establishing operating conditions and process efficiency; (3) scaling up the treatment process to the industrial level; (4) treatment plant design and commercial availability analysis of the required equipment; and (5) the costs of the inversion and operation of the plant treatment, cost/m3 for water recovery, and time of investment recovery. The physicochemical characteristics of the effluent exposed the polluted wastewater with sodium chloride salts and colourants, predominating a mixture of tartrazine, Red 40, and brilliant blue from the synthesis of food additives. Other contributions of organic compounds and salts could be in minor content. According to the effluent conditions, a coupled process, integrated with ozonation and reverse osmosis, was indicated to be a treatment for water recovery. Scaling up the plant treatment design resulted in 130 m2 of area, producing 7.7 m3/h of clean water. The cost of the effluent treatment was 1.4 USD/m3, with an inversion return of 3.4 years and cost investment of USD 860,407. The treatment process resulted a viable project for water recovery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
期刊最新文献
Hybrid Version of the Kedem-Katchalsky-Peusner Equations for Diffusive and Electrical Transport Processes in Membrane. Evaluation of Ceramic Membrane Filtration for Alternatives to Microplastics in Cosmetic Formulations Using FlowCam Analysis. Enhancing Virus Filter Performance Through Pretreatment by Membrane Adsorbers. Reverse Osmosis Coupled with Ozonation for Clean Water Recovery from an Industrial Effluent: Technical and Economic Analyses. Spacer Designs for Improved Hydrodynamics and Filtration Efficiency in Sea Water Reverse Osmosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1