Yingming Xu, Peng Zhou, Terrence Simon, Tianhong Cui
{"title":"Ultra-sensitive nitrate-ion detection via transconductance-enhanced graphene ion-sensitive field-effect transistors.","authors":"Yingming Xu, Peng Zhou, Terrence Simon, Tianhong Cui","doi":"10.1038/s41378-024-00768-4","DOIUrl":null,"url":null,"abstract":"<p><p>Current potentiometric sensing methods are limited to detecting nitrate at parts-per-billion (sub-micromolar) concentrations, and there are no existing potentiometric chemical sensors with ultralow detection limits below the parts-per-trillion (picomolar) level. To address these challenges, we integrate interdigital graphene ion-sensitive field-effect transistors (ISFETs) with a nitrate ion-sensitive membrane (ISM). The work aims to maximize nitrate ion transport through the nitrate ISM, while achieving high device transconductance by evaluating graphene layer thickness, optimizing channel width-to-length ratio (R<sub>WL</sub>), and enlarging total sensing area. The captured nitrate ions by the nitrate ISM induce surface potential changes that are transduced into electrical signals by graphene, manifested as the Dirac point shifts. The device exhibits Nernst response behavior under ultralow concentrations, achieving a sensitivity of 28 mV/decade and establishing a record low limit of detection of 0.041 ppt (4.8 × 10<sup>-13</sup> M). Additionally, the sensor showed a wide linear detection range from 0.1 ppt (1.2 × 10<sup>-12</sup> M) to 100 ppm (1.2 × 10<sup>-3</sup> M). Furthermore, successful detection of nitrate in tap and snow water was demonstrated with high accuracy, indicating promising applications to drinking water safety and environmental water quality control.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"137"},"PeriodicalIF":7.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00768-4","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Current potentiometric sensing methods are limited to detecting nitrate at parts-per-billion (sub-micromolar) concentrations, and there are no existing potentiometric chemical sensors with ultralow detection limits below the parts-per-trillion (picomolar) level. To address these challenges, we integrate interdigital graphene ion-sensitive field-effect transistors (ISFETs) with a nitrate ion-sensitive membrane (ISM). The work aims to maximize nitrate ion transport through the nitrate ISM, while achieving high device transconductance by evaluating graphene layer thickness, optimizing channel width-to-length ratio (RWL), and enlarging total sensing area. The captured nitrate ions by the nitrate ISM induce surface potential changes that are transduced into electrical signals by graphene, manifested as the Dirac point shifts. The device exhibits Nernst response behavior under ultralow concentrations, achieving a sensitivity of 28 mV/decade and establishing a record low limit of detection of 0.041 ppt (4.8 × 10-13 M). Additionally, the sensor showed a wide linear detection range from 0.1 ppt (1.2 × 10-12 M) to 100 ppm (1.2 × 10-3 M). Furthermore, successful detection of nitrate in tap and snow water was demonstrated with high accuracy, indicating promising applications to drinking water safety and environmental water quality control.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.