Cortical encoding of hierarchical linguistic information when syllabic rhythms are obscured by echoes

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2024-09-27 DOI:10.1016/j.neuroimage.2024.120875
{"title":"Cortical encoding of hierarchical linguistic information when syllabic rhythms are obscured by echoes","authors":"","doi":"10.1016/j.neuroimage.2024.120875","DOIUrl":null,"url":null,"abstract":"<div><div>In speech perception, low-frequency cortical activity tracks hierarchical linguistic units (e.g., syllables, phrases, and sentences) on top of acoustic features (e.g., speech envelope). Since the fluctuation of speech envelope typically corresponds to the syllabic boundaries, one common interpretation is that the acoustic envelope underlies the extraction of discrete syllables from continuous speech for subsequent linguistic processing. However, it remains unclear whether and how cortical activity encodes linguistic information when the speech envelope does not provide acoustic correlates of syllables. To address the issue, we introduced a frequency-tagging speech stream where the syllabic rhythm was obscured by echoic envelopes and investigated neural encoding of hierarchical linguistic information using electroencephalography (EEG). When listeners attended to the echoic speech, cortical activity showed reliable tracking of syllable, phrase, and sentence levels, among which the higher-level linguistic units elicited more robust neural responses. When attention was diverted from the echoic speech, reliable neural tracking of the syllable level was also observed in contrast to deteriorated neural tracking of the phrase and sentence levels. Further analyses revealed that the envelope aligned with the syllabic rhythm could be recovered from the echoic speech through a neural adaptation model, and the reconstructed envelope yielded higher predictive power for the neural tracking responses than either the original echoic envelope or anechoic envelope. Taken together, these results suggest that neural adaptation and attentional modulation jointly contribute to neural encoding of linguistic information in distorted speech where the syllabic rhythm is obscured by echoes.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924003720","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

In speech perception, low-frequency cortical activity tracks hierarchical linguistic units (e.g., syllables, phrases, and sentences) on top of acoustic features (e.g., speech envelope). Since the fluctuation of speech envelope typically corresponds to the syllabic boundaries, one common interpretation is that the acoustic envelope underlies the extraction of discrete syllables from continuous speech for subsequent linguistic processing. However, it remains unclear whether and how cortical activity encodes linguistic information when the speech envelope does not provide acoustic correlates of syllables. To address the issue, we introduced a frequency-tagging speech stream where the syllabic rhythm was obscured by echoic envelopes and investigated neural encoding of hierarchical linguistic information using electroencephalography (EEG). When listeners attended to the echoic speech, cortical activity showed reliable tracking of syllable, phrase, and sentence levels, among which the higher-level linguistic units elicited more robust neural responses. When attention was diverted from the echoic speech, reliable neural tracking of the syllable level was also observed in contrast to deteriorated neural tracking of the phrase and sentence levels. Further analyses revealed that the envelope aligned with the syllabic rhythm could be recovered from the echoic speech through a neural adaptation model, and the reconstructed envelope yielded higher predictive power for the neural tracking responses than either the original echoic envelope or anechoic envelope. Taken together, these results suggest that neural adaptation and attentional modulation jointly contribute to neural encoding of linguistic information in distorted speech where the syllabic rhythm is obscured by echoes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当音节节奏被回声掩盖时,大脑皮层对分层语言信息的编码。
在语音感知中,低频皮层活动在声学特征(如语音包络)的基础上跟踪分层语言单位(如音节、短语和句子)。由于语音包络的波动通常与音节边界相对应,一种常见的解释是,声学包络是从连续语音中提取离散音节进行后续语言处理的基础。然而,当语音包络不提供音节的声学相关信息时,大脑皮层活动是否以及如何编码语言信息仍不清楚。为了解决这个问题,我们引入了一种频率标记语音流,在这种语音流中,音节节奏被回声包络所掩盖,并使用脑电图(EEG)研究了分层语言信息的神经编码。当听者注意回声语音时,大脑皮层活动显示出对音节、短语和句子层次的可靠跟踪,其中较高层次的语言单位引起了更强烈的神经反应。当注意力从回声语音上转移时,也能观察到对音节级别的可靠神经跟踪,而对短语和句子级别的神经跟踪则有所减弱。进一步的分析表明,通过神经适应模型,可以从回声语音中恢复与音节节奏一致的包络,而且重建的包络对神经跟踪反应的预测能力比原始回声包络或消声包络都要高。综上所述,这些结果表明,神经适应和注意调节共同促进了神经对语言信息的编码,在失真语音中,音节节奏被回声所掩盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Characterizing the role of the microbiota-gut-brain axis in cerebral small vessel disease: An integrative multi‑omics study. Sleep-spindles as a marker of attention and intelligence in dogs. Cerebral blood flow and arterial transit time responses to exercise training in older adults. Decoding Cortical Chronotopy - Comparing the Influence of Different Cortical Organizational Schemes. Neurophysiological dynamics of metacontrol states: EEG insights into conflict regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1