Long-term stability of squeezed light in a fiber-based system using automated alignment.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2024-09-01 DOI:10.1063/5.0203988
Tomohiro Nakamura, Takefumi Nomura, Mamoru Endo, Atsushi Sakaguchi, He Ruofan, Takahiro Kashiwazaki, Takeshi Umeki, Kan Takase, Warit Asavanant, Jun-Ichi Yoshikawa, Akira Furusawa
{"title":"Long-term stability of squeezed light in a fiber-based system using automated alignment.","authors":"Tomohiro Nakamura, Takefumi Nomura, Mamoru Endo, Atsushi Sakaguchi, He Ruofan, Takahiro Kashiwazaki, Takeshi Umeki, Kan Takase, Warit Asavanant, Jun-Ichi Yoshikawa, Akira Furusawa","doi":"10.1063/5.0203988","DOIUrl":null,"url":null,"abstract":"<p><p>Providing a cloud service for optical quantum computing requires stabilizing the optical system for extended periods. It is advantageous to construct a fiber-based system, which does not require spatial alignment. However, fiber-based systems are instead subject to fiber-specific instabilities. For instance, there are phase drifts due to ambient temperature changes and external disturbances and polarization fluctuations due to the finite polarization extinction ratio of fiber components. Here, we report the success of measuring squeezed light with a fiber system for 24 h. To do this, we introduce stabilization mechanics to suppress fluctuations in the fiber system and an integrated controller to automatically align the entire system. The squeezed light at a wavelength of 1545.3 nm is measured every 2 min, where automated alignments are inserted every 30 min. The squeezing levels with an average of -4.42 dB are recorded with an extremely small standard deviation of 0.08 dB over 24 h. With the technologies developed here, we can build complicated optical setups with the fiber-based system and operate them automatically for extended periods, which is promising for cloud service of quantum computation.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0203988","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Providing a cloud service for optical quantum computing requires stabilizing the optical system for extended periods. It is advantageous to construct a fiber-based system, which does not require spatial alignment. However, fiber-based systems are instead subject to fiber-specific instabilities. For instance, there are phase drifts due to ambient temperature changes and external disturbances and polarization fluctuations due to the finite polarization extinction ratio of fiber components. Here, we report the success of measuring squeezed light with a fiber system for 24 h. To do this, we introduce stabilization mechanics to suppress fluctuations in the fiber system and an integrated controller to automatically align the entire system. The squeezed light at a wavelength of 1545.3 nm is measured every 2 min, where automated alignments are inserted every 30 min. The squeezing levels with an average of -4.42 dB are recorded with an extremely small standard deviation of 0.08 dB over 24 h. With the technologies developed here, we can build complicated optical setups with the fiber-based system and operate them automatically for extended periods, which is promising for cloud service of quantum computation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
A liquid metal diffusion measurement technique integrating the x-ray radiography and multi-slice sliding cell. Classification of the L-, H-mode, and plasma-free state: Convolutional neural networks and variational autoencoders on the edge reflectometer for KSTAR. Design of a gamma threshold detector based on the bubble chamber for high-flux gamma beams. Development and construction of a cost-effective non-contact instrument for measuring the dielectric constant of liquids. Development of a compact bolometer camera concept for investigation of radiation asymmetries at Wendelstein 7-X.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1