Development and construction of a cost-effective non-contact instrument for measuring the dielectric constant of liquids.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION Review of Scientific Instruments Pub Date : 2024-10-01 DOI:10.1063/5.0223926
Akram Hassanpouryouzband, Iraj Ahadzadeh, Abbas Mehrdad, Somayyeh Panahpour
{"title":"Development and construction of a cost-effective non-contact instrument for measuring the dielectric constant of liquids.","authors":"Akram Hassanpouryouzband, Iraj Ahadzadeh, Abbas Mehrdad, Somayyeh Panahpour","doi":"10.1063/5.0223926","DOIUrl":null,"url":null,"abstract":"<p><p>This research presents the development and construction of a cost-effective instrument, designed to measure the dielectric constant of liquids by employing a non-contact method that relies on determining the capacitance of a cell containing the liquid and its relaxation frequency. This instrument utilizes an astable multi-vibrator integrated with a resistance-capacitor network, in which the cell housing the liquid of interest functions as a capacitor element of the oscillator. The frequency of the generated oscillations is meticulously recorded using a seven-digit frequency meter with a resolution of 1 Hz. The cell was filled with an array of pure liquids with known dielectric constants, and their frequencies were subsequently recorded at ambient temperatures. An equation was fitted to the frequency-dielectric constant curve, which was used as a calibration equation to determine the dielectric constant of subsequent liquids. In addition to pure liquids, dielectric constants for solvent mixtures of varying mole fractions were also calculated using the previously established calibration equation. Our results demonstrated excellent frequency stability of the instrument, and the obtained dielectric constant values displayed significant consistency with both the experimental data and predictions made by computational methodologies. This suggests that the constructed instrument exhibits a high level of accuracy in measuring the dielectric constant of both pure and mixed liquids, establishing its potential utility in relevant research and industrial applications.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0223926","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

This research presents the development and construction of a cost-effective instrument, designed to measure the dielectric constant of liquids by employing a non-contact method that relies on determining the capacitance of a cell containing the liquid and its relaxation frequency. This instrument utilizes an astable multi-vibrator integrated with a resistance-capacitor network, in which the cell housing the liquid of interest functions as a capacitor element of the oscillator. The frequency of the generated oscillations is meticulously recorded using a seven-digit frequency meter with a resolution of 1 Hz. The cell was filled with an array of pure liquids with known dielectric constants, and their frequencies were subsequently recorded at ambient temperatures. An equation was fitted to the frequency-dielectric constant curve, which was used as a calibration equation to determine the dielectric constant of subsequent liquids. In addition to pure liquids, dielectric constants for solvent mixtures of varying mole fractions were also calculated using the previously established calibration equation. Our results demonstrated excellent frequency stability of the instrument, and the obtained dielectric constant values displayed significant consistency with both the experimental data and predictions made by computational methodologies. This suggests that the constructed instrument exhibits a high level of accuracy in measuring the dielectric constant of both pure and mixed liquids, establishing its potential utility in relevant research and industrial applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发和制造用于测量液体介电常数的成本效益型非接触式仪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
期刊最新文献
A liquid metal diffusion measurement technique integrating the x-ray radiography and multi-slice sliding cell. Classification of the L-, H-mode, and plasma-free state: Convolutional neural networks and variational autoencoders on the edge reflectometer for KSTAR. Design of a gamma threshold detector based on the bubble chamber for high-flux gamma beams. Development and construction of a cost-effective non-contact instrument for measuring the dielectric constant of liquids. Development of a compact bolometer camera concept for investigation of radiation asymmetries at Wendelstein 7-X.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1