Alberto Portone, Francesco Ganzerli, Tiziana Petrachi, Elisa Resca, Valentina Bergamini, Luca Accorsi, Alberto Ferrari, Simona Sbardelatti, Luigi Rovati, Giorgio Mari, Massimo Dominici, Elena Veronesi
{"title":"Hybrid biofabricated blood vessel for medical devices testing.","authors":"Alberto Portone, Francesco Ganzerli, Tiziana Petrachi, Elisa Resca, Valentina Bergamini, Luca Accorsi, Alberto Ferrari, Simona Sbardelatti, Luigi Rovati, Giorgio Mari, Massimo Dominici, Elena Veronesi","doi":"10.1080/14686996.2024.2404382","DOIUrl":null,"url":null,"abstract":"<p><p>Current <i>in vitro</i> and <i>in vivo</i> tests applied to assess the safety of medical devices retain several limitations, such as an incomplete ability to faithfully recapitulate human features, and to predict the response of human tissues together with non-trivial ethical aspects. We here challenged a new hybrid biofabrication technique that combines bioprinting and Fast Diffusion-induced Gelation strategy to generate a vessel-like structure with the attempt to spatially organize fibroblasts, smooth-muscle cells, and endothelial cells. The introduction of Fast Diffusion-induced Gelation minimizes the endothelial cell mortality during biofabrication and produce a thin endothelial layer with tunable thickness. Cell viability, Von Willebrand factor, and CD31 expression were evaluated on biofabricated tissues, showing how bioprinting and Fast Diffusion-induced Gelation can replicate human vessels architecture and complexity. We then applied biofabricated tissue to study the cytotoxicity of a carbothane catheter under static condition, and to better recapitulate the effect of blood flow, a novel bioreactor named CuBiBox (Customized Biological Box) was developed and introduced in a dynamic modality. Collectively, we propose a novel bioprinted platform for human <i>in vitro</i> biocompatibility testing, predicting the impact of medical devices and their materials on vascular systems, reducing animal experimentation and, ultimately, accelerating time to market.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2404382"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2404382","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Current in vitro and in vivo tests applied to assess the safety of medical devices retain several limitations, such as an incomplete ability to faithfully recapitulate human features, and to predict the response of human tissues together with non-trivial ethical aspects. We here challenged a new hybrid biofabrication technique that combines bioprinting and Fast Diffusion-induced Gelation strategy to generate a vessel-like structure with the attempt to spatially organize fibroblasts, smooth-muscle cells, and endothelial cells. The introduction of Fast Diffusion-induced Gelation minimizes the endothelial cell mortality during biofabrication and produce a thin endothelial layer with tunable thickness. Cell viability, Von Willebrand factor, and CD31 expression were evaluated on biofabricated tissues, showing how bioprinting and Fast Diffusion-induced Gelation can replicate human vessels architecture and complexity. We then applied biofabricated tissue to study the cytotoxicity of a carbothane catheter under static condition, and to better recapitulate the effect of blood flow, a novel bioreactor named CuBiBox (Customized Biological Box) was developed and introduced in a dynamic modality. Collectively, we propose a novel bioprinted platform for human in vitro biocompatibility testing, predicting the impact of medical devices and their materials on vascular systems, reducing animal experimentation and, ultimately, accelerating time to market.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.