{"title":"Enhancing brain image quality with 3D U-net for stripe removal in light sheet fluorescence microscopy.","authors":"Changshan Li, Youqi Li, Hu Zhao, Liya Ding","doi":"10.1186/s40708-024-00236-9","DOIUrl":null,"url":null,"abstract":"<p><p>Light Sheet Fluorescence Microscopy (LSFM) is increasingly popular in neuroimaging for its ability to capture high-resolution 3D neural data. However, the presence of stripe noise significantly degrades image quality, particularly in complex 3D stripes with varying widths and brightness, posing challenges in neuroscience research. Existing stripe removal algorithms excel in suppressing noise and preserving details in 2D images with simple stripes but struggle with the complexity of 3D stripes. To address this, we propose a novel 3D U-net model for Stripe Removal in Light sheet fluorescence microscopy (USRL). This approach directly learns and removes stripes in 3D space across different scales, employing a dual-resolution strategy to effectively handle stripes of varying complexities. Additionally, we integrate a nonlinear mapping technique to normalize high dynamic range and unevenly distributed data before applying the stripe removal algorithm. We validate our method on diverse datasets, demonstrating substantial improvements in peak signal-to-noise ratio (PSNR) compared to existing algorithms. Moreover, our algorithm exhibits robust performance when applied to real LSFM data. Through extensive validation experiments, both on test sets and real-world data, our approach outperforms traditional methods, affirming its effectiveness in enhancing image quality. Furthermore, the adaptability of our algorithm extends beyond LSFM applications to encompass other imaging modalities. This versatility underscores its potential to enhance image usability across various research disciplines.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"24"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427638/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00236-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Light Sheet Fluorescence Microscopy (LSFM) is increasingly popular in neuroimaging for its ability to capture high-resolution 3D neural data. However, the presence of stripe noise significantly degrades image quality, particularly in complex 3D stripes with varying widths and brightness, posing challenges in neuroscience research. Existing stripe removal algorithms excel in suppressing noise and preserving details in 2D images with simple stripes but struggle with the complexity of 3D stripes. To address this, we propose a novel 3D U-net model for Stripe Removal in Light sheet fluorescence microscopy (USRL). This approach directly learns and removes stripes in 3D space across different scales, employing a dual-resolution strategy to effectively handle stripes of varying complexities. Additionally, we integrate a nonlinear mapping technique to normalize high dynamic range and unevenly distributed data before applying the stripe removal algorithm. We validate our method on diverse datasets, demonstrating substantial improvements in peak signal-to-noise ratio (PSNR) compared to existing algorithms. Moreover, our algorithm exhibits robust performance when applied to real LSFM data. Through extensive validation experiments, both on test sets and real-world data, our approach outperforms traditional methods, affirming its effectiveness in enhancing image quality. Furthermore, the adaptability of our algorithm extends beyond LSFM applications to encompass other imaging modalities. This versatility underscores its potential to enhance image usability across various research disciplines.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing