{"title":"Harnessing the synergy of statistics and deep learning for BCI competition 4 dataset 4: a novel approach.","authors":"Gauttam Jangir, Nisheeth Joshi, Gaurav Purohit","doi":"10.1186/s40708-025-00250-5","DOIUrl":null,"url":null,"abstract":"<p><p>Human brain signal processing and finger's movement coordination is a complex mechanism. In this mechanism finger's movement is mostly performed for every day's task. It is well known that to capture such movement EEG or ECoG signals are used. In this order to find the patterns from these signals is important. The BCI competition 4 dataset 4 is one such standard dataset of ECoG signals for individual finger movement provided by University of Washington, USA. In this work, this dataset is, statistically analyzed to understand the nature of data and outliers in it. Effectiveness of pre-processing algorithm is then visualized. The cleaned dataset has dual polarity and gaussian distribution nature which makes Tanh activation function suitable for the neural network BC4D4 model. BC4D4 uses Convolutional neural network for feature extraction, dense neural network for pattern identification and incorporating dropout & regularization making the proposed model more resilient. Our model outperforms the state of the art work on the dataset 4 achieving 0.85 correlation value that is 1.85X (Winner of BCI competition 4, 2012) & 1.25X (Finger Flex model, 2022).</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"12 1","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-025-00250-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Human brain signal processing and finger's movement coordination is a complex mechanism. In this mechanism finger's movement is mostly performed for every day's task. It is well known that to capture such movement EEG or ECoG signals are used. In this order to find the patterns from these signals is important. The BCI competition 4 dataset 4 is one such standard dataset of ECoG signals for individual finger movement provided by University of Washington, USA. In this work, this dataset is, statistically analyzed to understand the nature of data and outliers in it. Effectiveness of pre-processing algorithm is then visualized. The cleaned dataset has dual polarity and gaussian distribution nature which makes Tanh activation function suitable for the neural network BC4D4 model. BC4D4 uses Convolutional neural network for feature extraction, dense neural network for pattern identification and incorporating dropout & regularization making the proposed model more resilient. Our model outperforms the state of the art work on the dataset 4 achieving 0.85 correlation value that is 1.85X (Winner of BCI competition 4, 2012) & 1.25X (Finger Flex model, 2022).
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing