{"title":"Comparative study of polysaccharide metabolites in purple, orange, and white Ipomoea batatas tubers","authors":"Xiuzhi Wang, Xiaolin Wan, Jiaqi Wu, Lingjun Cui, Qiang Xiao","doi":"10.1016/j.fochx.2024.101855","DOIUrl":null,"url":null,"abstract":"<div><div>We employed LC-MS/MS to investigate the metabolic profiles of polysaccharide compounds in white, orange, and purple sweet potato flesh. Comparisons between Orange vs White, Purple vs Orange, and Purple vs White identified 69 polysaccharide metabolites, including 23, 36, and 44 differential metabolites, respectively, with distinct differentiation. Among the three sample groups, 14 polysaccharide compounds and 2 anthocyanins exhibited significant differences. Our further analysis indicated that anthocyanins occupy a central position in the related network diagram and are interconnected with polysaccharides. In metabolic pathways, sucrose and the anthocyanin precursor UDP-glucose were upregulated in purple sweet potatoes, along with elevated levels of pelargonidin 3-O-β-D-sambubioside and delphinidin 3,5-diglucoside. Conversely, sucrose was downregulated in purple sweet potatoes while increasing in white and orange varieties. Therefore, we hypothesize that the competition between sugars and anthocyanins for shared biosynthesis precursors is attributed to differential polysaccharide metabolites among sweet potato tubers of three colors.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"Article 101855"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524007430","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We employed LC-MS/MS to investigate the metabolic profiles of polysaccharide compounds in white, orange, and purple sweet potato flesh. Comparisons between Orange vs White, Purple vs Orange, and Purple vs White identified 69 polysaccharide metabolites, including 23, 36, and 44 differential metabolites, respectively, with distinct differentiation. Among the three sample groups, 14 polysaccharide compounds and 2 anthocyanins exhibited significant differences. Our further analysis indicated that anthocyanins occupy a central position in the related network diagram and are interconnected with polysaccharides. In metabolic pathways, sucrose and the anthocyanin precursor UDP-glucose were upregulated in purple sweet potatoes, along with elevated levels of pelargonidin 3-O-β-D-sambubioside and delphinidin 3,5-diglucoside. Conversely, sucrose was downregulated in purple sweet potatoes while increasing in white and orange varieties. Therefore, we hypothesize that the competition between sugars and anthocyanins for shared biosynthesis precursors is attributed to differential polysaccharide metabolites among sweet potato tubers of three colors.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.