首页 > 最新文献

Food Chemistry: X最新文献

英文 中文
Dietary inulin supplementation improves meat quality and off-flavor of duck meat referring to regulated muscle fiber types and antioxidant capacity.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-30 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102148
Hailei Sun, Jia Wang, Jina Han, Xiaolong Li, Juan Zhao, Yimin Zhang, Jingxin Sun

This study aimed to evaluate the effects of dietary inulin (0-30 g/kg) on duck meat, muscle fiber types, meat quality, antioxidant ability, Low-field nuclear magnetic resonance, amino acid and off-flavor. These results indicated that inulin promoted the conversion of type II to type I muscle fibers. Compared with the control group, supplementation with 20 g/kg inulin reduced (P < 0.05) the shear force and pressure water loss by 17.9 N and 1.9 %, respectively. Inulin increased the pH24h and the redness of duck meat. Low-field nuclear magnetic resonance confirmed that inulin increased the immobile water content and enhanced water retention in duck meat. Additionally, inulin enhanced antioxidant capacity and reduced the degree of lipid oxidation. Inulin increased the content of umami and sweet amino acids by 2.63 %, which affects the flavor of duck meat. Notably, dietary inulin reduced the content of volatile off-flavor substances and improved the flavor of duck meat. In summary, dietary inulin may be an effective strategy for producing high quality duck meat and removing duck off-flavor.

{"title":"Dietary inulin supplementation improves meat quality and off-flavor of duck meat referring to regulated muscle fiber types and antioxidant capacity.","authors":"Hailei Sun, Jia Wang, Jina Han, Xiaolong Li, Juan Zhao, Yimin Zhang, Jingxin Sun","doi":"10.1016/j.fochx.2024.102148","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102148","url":null,"abstract":"<p><p>This study aimed to evaluate the effects of dietary inulin (0-30 g/kg) on duck meat, muscle fiber types, meat quality, antioxidant ability, Low-field nuclear magnetic resonance, amino acid and off-flavor. These results indicated that inulin promoted the conversion of type II to type I muscle fibers. Compared with the control group, supplementation with 20 g/kg inulin reduced (<i>P</i> < 0.05) the shear force and pressure water loss by 17.9 N and 1.9 %, respectively. Inulin increased the pH<sub>24h</sub> and the redness of duck meat. Low-field nuclear magnetic resonance confirmed that inulin increased the immobile water content and enhanced water retention in duck meat. Additionally, inulin enhanced antioxidant capacity and reduced the degree of lipid oxidation. Inulin increased the content of umami and sweet amino acids by 2.63 %, which affects the flavor of duck meat. Notably, dietary inulin reduced the content of volatile off-flavor substances and improved the flavor of duck meat. In summary, dietary inulin may be an effective strategy for producing high quality duck meat and removing duck off-flavor.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102148"},"PeriodicalIF":6.5,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751494/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subregional pedoclimatic conditions with contrasted UV-radiation shape host-microbiome and metabolome phenotypes in the grape berry.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-29 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102139
Viviana Martins, Cécile Abdallah, António Teixeira, Carolina Moreira, Márcio Nóbrega, Arnaud Lanoue, Hernâni Gerós

This study used integrative omics to address the response of key elements of the grapevine holobiont to contrasted pedoclimatic conditions found in distinct subregions of Douro Valley (Portugal). A metabolic OPLS-DA model predicted with 100 % accuracy the geographic origin of berries; higher UV radiation, higher temperature and lower precipitation stimulated the accumulation of phenolic acids, flavonols and malvidin conjugates, in detriment of amino acids, organic acids, flavan-3-ols, proanthocyanidins and non-malvidin anthocyanins. Metabarcoding showed a trade-off between bacteria and fungal diversity among subregions, with Pseudomonas, Lactobacillus, Aspergillus and Penicillium acting as intraregional microbial markers. The high phenotypic plasticity of berries and the role of microbes in this process are relevant upon current projections for increased UV radiation and temperature in Southern European viticulture, in a climate change scenario, with predicted impacts on regional wine quality and on the development of adaptation strategies for resilient viticulture.

{"title":"Subregional pedoclimatic conditions with contrasted UV-radiation shape host-microbiome and metabolome phenotypes in the grape berry.","authors":"Viviana Martins, Cécile Abdallah, António Teixeira, Carolina Moreira, Márcio Nóbrega, Arnaud Lanoue, Hernâni Gerós","doi":"10.1016/j.fochx.2024.102139","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102139","url":null,"abstract":"<p><p>This study used integrative omics to address the response of key elements of the grapevine holobiont to contrasted pedoclimatic conditions found in distinct subregions of Douro Valley (Portugal). A metabolic OPLS-DA model predicted with 100 % accuracy the geographic origin of berries; higher UV radiation, higher temperature and lower precipitation stimulated the accumulation of phenolic acids, flavonols and malvidin conjugates, in detriment of amino acids, organic acids, flavan-3-ols, proanthocyanidins and non-malvidin anthocyanins. Metabarcoding showed a trade-off between bacteria and fungal diversity among subregions, with <i>Pseudomonas</i>, <i>Lactobacillus, Aspergillus</i> and <i>Penicillium</i> acting as intraregional microbial markers. The high phenotypic plasticity of berries and the role of microbes in this process are relevant upon current projections for increased UV radiation and temperature in Southern European viticulture, in a climate change scenario, with predicted impacts on regional wine quality and on the development of adaptation strategies for resilient viticulture.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102139"},"PeriodicalIF":6.5,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750517/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The stabilization mechanism of the pea protein and rutin complex at the gas/liquid interface and its application in low-fat cream.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-28 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102140
Chunyang Xia, Fangxiao Lou, Shuo Zhang, Tianfu Cheng, Zhaodong Hu, Zengwang Guo, Ping Ma

The objective of this study was to substitute partially fat with pea protein isolate (PP)/rutin (Ru) complexes to produce a healthy and stable low-fat whipped cream. Ru enhanced the foam properties of PP. The Ru binding equivalent was the best at a mass ratio of PP/Ru of 64:4, the PP/Ru complexes particle size was the smallest. The synergistic adsorption of Ru reduced the interfacial tension of the complexes and accelerated their diffusion, permeation, and rearrangement at the air/water interface. The results of rheology and Lissajous plots suggested that PP/Ru complexes functioned as an interfacing stabilizer, enhanced the elastic strength of interface film, and improved the stability of foam. PP/Ru complexes as a fat substitute promoted the aggregation of fat globules and the formation of fat globule network structure. When the substitution rate is 10 %, the texture, stability, and microstructure of the sample are nearly identical to those of full-fat cream.

{"title":"The stabilization mechanism of the pea protein and rutin complex at the gas/liquid interface and its application in low-fat cream.","authors":"Chunyang Xia, Fangxiao Lou, Shuo Zhang, Tianfu Cheng, Zhaodong Hu, Zengwang Guo, Ping Ma","doi":"10.1016/j.fochx.2024.102140","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102140","url":null,"abstract":"<p><p>The objective of this study was to substitute partially fat with pea protein isolate (PP)/rutin (Ru) complexes to produce a healthy and stable low-fat whipped cream. Ru enhanced the foam properties of PP. The Ru binding equivalent was the best at a mass ratio of PP/Ru of 64:4, the PP/Ru complexes particle size was the smallest. The synergistic adsorption of Ru reduced the interfacial tension of the complexes and accelerated their diffusion, permeation, and rearrangement at the air/water interface. The results of rheology and Lissajous plots suggested that PP/Ru complexes functioned as an interfacing stabilizer, enhanced the elastic strength of interface film, and improved the stability of foam. PP/Ru complexes as a fat substitute promoted the aggregation of fat globules and the formation of fat globule network structure. When the substitution rate is 10 %, the texture, stability, and microstructure of the sample are nearly identical to those of full-fat cream.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102140"},"PeriodicalIF":6.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of different white nanomaterials on pH response ability and physicochemical performance of anthocyanin-loaded carboxymethyl cellulose-polyvinyl alcohol films.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-28 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102137
Yuqian Li, Xue Yang, Yunfei Zou, Huixuan Zhang, Ying Zhou, Qiujin Zhu, Yuanyuan Liu, Zhengcong Wang

The anthocyanin-loaded films based on natural polymers as pH-responsive indicator are widely applied in the food preservation. However, the low mechanical strength and storage stability limited their practical application, there is an urgent demand to improve the performance of anthocyanin-loaded films. In order to avoid affecting the color indication of anthocyanins, we explored the effect of eight kinds of white nanomaterials on improving the performance of films. The results revealed that some nanomaterials showed capability in improving the polymer molecular interactions and enhancement in mechanical properties, barrier ability, and antioxidant activity. However, nanomaterials containing Zn was not suitable for anthocyanin-loaded film modification, because it could destroy the pH responsiveness of anthocyanin. The nano Al2O3 could increase the sensitivity of anthocyanin-loaded film in pH-response, which achieved the highest performance score during pork storage. This investigation will provide theoretical support for the development of more optimized pH-responsive anthocyanin-loaded films in the future.

{"title":"Effects of different white nanomaterials on pH response ability and physicochemical performance of anthocyanin-loaded carboxymethyl cellulose-polyvinyl alcohol films.","authors":"Yuqian Li, Xue Yang, Yunfei Zou, Huixuan Zhang, Ying Zhou, Qiujin Zhu, Yuanyuan Liu, Zhengcong Wang","doi":"10.1016/j.fochx.2024.102137","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102137","url":null,"abstract":"<p><p>The anthocyanin-loaded films based on natural polymers as pH-responsive indicator are widely applied in the food preservation. However, the low mechanical strength and storage stability limited their practical application, there is an urgent demand to improve the performance of anthocyanin-loaded films. In order to avoid affecting the color indication of anthocyanins, we explored the effect of eight kinds of white nanomaterials on improving the performance of films. The results revealed that some nanomaterials showed capability in improving the polymer molecular interactions and enhancement in mechanical properties, barrier ability, and antioxidant activity. However, nanomaterials containing Zn was not suitable for anthocyanin-loaded film modification, because it could destroy the pH responsiveness of anthocyanin. The nano Al<sub>2</sub>O<sub>3</sub> could increase the sensitivity of anthocyanin-loaded film in pH-response, which achieved the highest performance score during pork storage. This investigation will provide theoretical support for the development of more optimized pH-responsive anthocyanin-loaded films in the future.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102137"},"PeriodicalIF":6.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750485/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of differential metabolites in Liuyang douchi at different fermentation stages based on untargeted metabolomics approach.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-28 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102097
Liwen Jiang, Yi Chen, Tiantian Zhao, Pao Li, Luyan Liao, Yang Liu

The quality and flavor of Liuyang Douchi are usually closely related to the metabolites compostion. This work described the metabolic profiles of Liuyang douchi during fermentation. Obvious hydrolysis of carbohydrates, proteins and slight lipids degradation were observed. Notably, the qu-making and pile-fermentation stage of douchi could be easily distinguished according to their metabolites profile, and pile-fermentation stage showed the most abundant metabolites. Specifically, organic acid, such as succinic acid and lactic acid, accumulated during pile-fermentation, as well as amino acids and derivatives. Especially glutamate (Glu), which contributed to the umami taste, increased form 0.82 mg/g to 15.90 mg/g after fermentation. Meanwhile, metabolisms related to amino acids were also the main enrichment metabolic pathways. Among them, some flavor compunds such as phenylacetaldehyde might drived from phenylalanine metabolism. These results could provide a new understanding on the metabolic characteristics during Liuyang douchi fermentation.

{"title":"Analysis of differential metabolites in Liuyang douchi at different fermentation stages based on untargeted metabolomics approach.","authors":"Liwen Jiang, Yi Chen, Tiantian Zhao, Pao Li, Luyan Liao, Yang Liu","doi":"10.1016/j.fochx.2024.102097","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102097","url":null,"abstract":"<p><p>The quality and flavor of Liuyang Douchi are usually closely related to the metabolites compostion. This work described the metabolic profiles of Liuyang douchi during fermentation. Obvious hydrolysis of carbohydrates, proteins and slight lipids degradation were observed. Notably, the qu-making and pile-fermentation stage of douchi could be easily distinguished according to their metabolites profile, and pile-fermentation stage showed the most abundant metabolites. Specifically, organic acid, such as succinic acid and lactic acid, accumulated during pile-fermentation, as well as amino acids and derivatives. Especially glutamate (Glu), which contributed to the umami taste, increased form 0.82 mg/g to 15.90 mg/g after fermentation. Meanwhile, metabolisms related to amino acids were also the main enrichment metabolic pathways. Among them, some flavor compunds such as phenylacetaldehyde might drived from phenylalanine metabolism. These results could provide a new understanding on the metabolic characteristics during Liuyang douchi fermentation.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102097"},"PeriodicalIF":6.5,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751413/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of storage on volatile organic components and physiological properties of different storage-tolerant rice varieties.
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-27 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102134
Dawei Zhu, Xin Zheng, Huiyin Dong, Xingquan Liu, Xianqiao Hu, Mingxue Chen, Xin Liu, Yafang Shao

The effects of storage on rice flavor among different rice varieties have not been well studied. To address this gap, we analyzed volatile organic components (VOCs) identified by gas chromatography-ion mobility spectrometry (GC-IMS) and related physicochemical properties of different storage-tolerant rice varieties during storage. The results showed that VOCs of four rice varieties significantly changed after 6 months of storage; OPLS-DA analysis classified the four rice varieties into two groups. There were fewer (N81 and JH1) and more significant changes (N84 and ZJ96) after storage, and the hexanal and 2-pentylfuran were considered the key VOCs for flavor changes during storage. Lipoxygenase (LOX) activity first increased and then decreased, while antioxidant activities decreased during storage. Under these conditions, oleic and linoleic acids were hydrolyzed. These results provide a better understanding of rice flavor changes after storage between different storable rice varieties.

{"title":"Effects of storage on volatile organic components and physiological properties of different storage-tolerant rice varieties.","authors":"Dawei Zhu, Xin Zheng, Huiyin Dong, Xingquan Liu, Xianqiao Hu, Mingxue Chen, Xin Liu, Yafang Shao","doi":"10.1016/j.fochx.2024.102134","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102134","url":null,"abstract":"<p><p>The effects of storage on rice flavor among different rice varieties have not been well studied. To address this gap, we analyzed volatile organic components (VOCs) identified by gas chromatography-ion mobility spectrometry (GC-IMS) and related physicochemical properties of different storage-tolerant rice varieties during storage. The results showed that VOCs of four rice varieties significantly changed after 6 months of storage; OPLS-DA analysis classified the four rice varieties into two groups. There were fewer (N81 and JH1) and more significant changes (N84 and ZJ96) after storage, and the hexanal and 2-pentylfuran were considered the key VOCs for flavor changes during storage. Lipoxygenase (LOX) activity first increased and then decreased, while antioxidant activities decreased during storage. Under these conditions, oleic and linoleic acids were hydrolyzed. These results provide a better understanding of rice flavor changes after storage between different storable rice varieties.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102134"},"PeriodicalIF":6.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel chitosan microsphere as food processing enzyme immobilization carrier and its application in nucleotide production. 新型壳聚糖微球作为食品加工酶固定载体及其在核苷酸生产中的应用。
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-27 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102130
Xiao-Yan Yin, Rui-Fan Yang, Zhong-Hua Yang

Developing a robust and safe carrier for enzyme immobilization is crucial for their application in the food processing industry. In this study, a novel crosslinked chitosan microspheres (CSMs) were prepared using glutaraldehyde (GA) as the crosslinking agent, using a newly developed emulsification-neutralization combined method. Nuclease P1 (NP1) was immobilized onto these microspheres, the maximum activity of NP1@CSMs-GA reach to 53,859.4 U/g. The activity recovery yield reach to 75 %. Compared to the free NP1, the stability of NP1@CSMs-GA was significantly enhanced. Its vmax and Km is 895.71 mg/(g·min) and 77.27 mg/mL respectively. This NP1@CSMs-GA was utilized in production of nucleotides through hydrolysis of RNA. In BSTR, NP1@CSMs-GA retained more than 75.1 % initial activity after 10 cycles of reuse. Moreover, in PBR, the RNA hydrolysis conversion rate maintained 81 % after 24 h of continuous operation. These results demonstrate that NP1@CSMs-GA exhibits excellent reusability and production stability in practical processes.

开发一种稳定、安全的酶固定化载体对其在食品加工业中的应用至关重要。本研究以戊二醛(GA)为交联剂,采用新开发的乳化-中和复合法制备了新型交联壳聚糖微球(csm)。将核酸酶P1 (NP1)固定在这些微球上,NP1@CSMs-GA的最大活性可达53,859.4 U/g。活性回收率达75%。与游离的NP1相比,NP1@CSMs-GA的稳定性显著增强。vmax和Km分别为895.71 mg/(g·min)和77.27 mg/mL。这个NP1@CSMs-GA被用于通过RNA水解生产核苷酸。在BSTR中,NP1@CSMs-GA在10个循环重用后保留了超过75.1%的初始活性。此外,在PBR中,连续操作24 h后,RNA水解转化率保持在81%。这些结果表明,NP1@CSMs-GA在实际生产过程中具有良好的可重用性和生产稳定性。
{"title":"A novel chitosan microsphere as food processing enzyme immobilization carrier and its application in nucleotide production.","authors":"Xiao-Yan Yin, Rui-Fan Yang, Zhong-Hua Yang","doi":"10.1016/j.fochx.2024.102130","DOIUrl":"10.1016/j.fochx.2024.102130","url":null,"abstract":"<p><p>Developing a robust and safe carrier for enzyme immobilization is crucial for their application in the food processing industry. In this study, a novel crosslinked chitosan microspheres (CSMs) were prepared using glutaraldehyde (GA) as the crosslinking agent, using a newly developed emulsification-neutralization combined method. Nuclease P1 (NP1) was immobilized onto these microspheres, the maximum activity of NP1@CSMs-GA reach to 53,859.4 U/g. The activity recovery yield reach to 75 %. Compared to the free NP1, the stability of NP1@CSMs-GA was significantly enhanced. Its v<sub>max</sub> and K<sub>m</sub> is 895.71 mg/(g·min) and 77.27 mg/mL respectively. This NP1@CSMs-GA was utilized in production of nucleotides through hydrolysis of RNA. In BSTR, NP1@CSMs-GA retained more than 75.1 % initial activity after 10 cycles of reuse. Moreover, in PBR, the RNA hydrolysis conversion rate maintained 81 % after 24 h of continuous operation. These results demonstrate that NP1@CSMs-GA exhibits excellent reusability and production stability in practical processes.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102130"},"PeriodicalIF":6.5,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11750442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143003061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physicochemical characterization and in vitro digestibility of resistant starch from corn starch sugar residue. 玉米淀粉糖渣中抗性淀粉的理化特性及体外消化率研究。
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-26 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102113
Qianqian Dai, Xiaoke Li, Chuanbo He, Ying Liang, Hejian Xiong, Ying Ma, Shaowei Zhai

This study sought to investigate the thermal stability and digestibility of corn starch sugar residue resistant starch (CSSR-RS) through comparative analysis of the physicochemical properties and structural characteristics among CSSR-RS, high-amylose corn starch (HS), and normal corn starch (NS). CSSR-RS contained 51.76 % resistant starch (RS), with 42.6 % remaining after high-temperature treatment, which was significantly higher than HS, demonstrating strong resistance to gelatinization. CSSR-RS is characterized by highly ordered aggregation of small molecules with a C-type crystalline structure, and irregular granular structures with wrinkled surfaces. Compared with NS and HS, the short-range and long-range order of CSSR-RS were significantly higher, indicating excellent thermal stability. In vitro simulated digestion revealed that the total hydrolysis rate of CSSR-RS was significantly lower than those of NS and HS, and the residual digesta of CSSR-RS also showed better resistance to digestion than HS. CSSR-RS exhibited significant development prospects in healthy food.

本研究通过对比分析玉米淀粉抗糖渣淀粉(CSSR-RS)与高直链玉米淀粉(HS)和普通玉米淀粉(NS)的理化性质和结构特征,探讨CSSR-RS的热稳定性和消化率。CSSR-RS的抗性淀粉(RS)含量为51.76%,高温处理后的抗性淀粉残留量为42.6%,显著高于HS,表现出较强的抗糊化能力。CSSR-RS的特点是小分子高度有序聚集,具有c型晶体结构,不规则颗粒结构,表面皱褶。与NS和HS相比,CSSR-RS的近程和远程序均显著提高,表现出优异的热稳定性。体外模拟消化实验表明,CSSR-RS的总水解率显著低于NS和HS,且CSSR-RS的残余食糜也表现出比HS更好的消化抗性。CSSR-RS在健康食品领域具有重要的发展前景。
{"title":"Physicochemical characterization and <i>in vitro</i> digestibility of resistant starch from corn starch sugar residue.","authors":"Qianqian Dai, Xiaoke Li, Chuanbo He, Ying Liang, Hejian Xiong, Ying Ma, Shaowei Zhai","doi":"10.1016/j.fochx.2024.102113","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102113","url":null,"abstract":"<p><p>This study sought to investigate the thermal stability and digestibility of corn starch sugar residue resistant starch (CSSR-RS) through comparative analysis of the physicochemical properties and structural characteristics among CSSR-RS, high-amylose corn starch (HS), and normal corn starch (NS). CSSR-RS contained 51.76 % resistant starch (RS), with 42.6 % remaining after high-temperature treatment, which was significantly higher than HS, demonstrating strong resistance to gelatinization. CSSR-RS is characterized by highly ordered aggregation of small molecules with a C-type crystalline structure, and irregular granular structures with wrinkled surfaces. Compared with NS and HS, the short-range and long-range order of CSSR-RS were significantly higher, indicating excellent thermal stability. <i>In vitro</i> simulated digestion revealed that the total hydrolysis rate of CSSR-RS was significantly lower than those of NS and HS, and the residual digesta of CSSR-RS also showed better resistance to digestion than HS. CSSR-RS exhibited significant development prospects in healthy food.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102113"},"PeriodicalIF":6.5,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742812/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A modern scientific perspective on the flavor and functional properties of diverse teas in traditional cuisine "tea-flavored fish": From macroscopic quality to microscopic variations. 从现代科学的角度看传统菜肴“茶香鱼”中不同茶叶的风味和功能特性:从宏观品质到微观变化。
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-25 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102122
Wenxia Wang, Kun Liu, Chunlong Liu, Bei Yang, Hao Dong, Wenzhen Liao, Xingfen Yang, Qi He

The historical appreciation of tea dates back to ancient times, while technological limitations have long hindered in-depth exploration of its flavor complexity and functional attributes. This study investigated the effects of various teas on a traditional delicacy, "tea-flavored fish", using teas processed via traditional methods. Analysis of functional components revealed that processing and fermentation reduced catechin levels (186.3 mg/g to 58.8 mg/g) while increasing theaflavins (16.6 mg/g to 39.6 mg/g), leading to decreased antioxidant and antimicrobial activities. Tea flavored fish was prepared following traditional techniques. The results indicated that the teas preserved their sensory qualities such as texture and color, inhibited metabolic activity and microbial growth, delayed lipid oxidation and protein degradation, and inhibited biogenic amine accumulation. Furthermore, minor compositional variations were observed in the final product. These findings offer novel insights into the application of modern scientific concepts to elucidate the principles underlying traditional craftsmanship.

对茶的历史欣赏可以追溯到古代,但技术限制长期阻碍了对其风味复杂性和功能属性的深入探索。本研究调查了各种茶对传统美食“茶味鱼”的影响,使用的是通过传统方法加工的茶。功能成分分析表明,加工和发酵降低了儿茶素水平(186.3 mg/g至58.8 mg/g),增加了茶黄素水平(16.6 mg/g至39.6 mg/g),导致抗氧化和抗菌活性下降。茶香鱼是按照传统工艺制作的。结果表明,茶树保留了茶的质地和颜色等感官品质,抑制了代谢活性和微生物生长,延缓了脂质氧化和蛋白质降解,抑制了生物胺的积累。此外,在最终产品中观察到微小的成分变化。这些发现为应用现代科学概念阐明传统工艺的基本原理提供了新的见解。
{"title":"A modern scientific perspective on the flavor and functional properties of diverse teas in traditional cuisine \"tea-flavored fish\": From macroscopic quality to microscopic variations.","authors":"Wenxia Wang, Kun Liu, Chunlong Liu, Bei Yang, Hao Dong, Wenzhen Liao, Xingfen Yang, Qi He","doi":"10.1016/j.fochx.2024.102122","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102122","url":null,"abstract":"<p><p>The historical appreciation of tea dates back to ancient times, while technological limitations have long hindered in-depth exploration of its flavor complexity and functional attributes. This study investigated the effects of various teas on a traditional delicacy, \"tea-flavored fish\", using teas processed via traditional methods. Analysis of functional components revealed that processing and fermentation reduced catechin levels (186.3 mg/g to 58.8 mg/g) while increasing theaflavins (16.6 mg/g to 39.6 mg/g), leading to decreased antioxidant and antimicrobial activities. Tea flavored fish was prepared following traditional techniques. The results indicated that the teas preserved their sensory qualities such as texture and color, inhibited metabolic activity and microbial growth, delayed lipid oxidation and protein degradation, and inhibited biogenic amine accumulation. Furthermore, minor compositional variations were observed in the final product. These findings offer novel insights into the application of modern scientific concepts to elucidate the principles underlying traditional craftsmanship.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102122"},"PeriodicalIF":6.5,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143003060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of mixed fermentation on the flavor quality and in vitro antioxidant activity of Zaosu pear-Merlot grape composite alcoholic beverage. 混合发酵对枣苏梨-梅洛葡萄复合酒精饮料风味品质及体外抗氧化活性的影响
IF 6.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Pub Date : 2024-12-24 eCollection Date: 2025-01-01 DOI: 10.1016/j.fochx.2024.102128
Binyan Xu, Xueshan Yang, Jie Zhao, Baihan Yu, Jiaxin Li, Xia Zhu

In this study, a mixed fermentation strategy using grape-blended pear juice co-inoculated with Metschnikowia pulcherrima 346 and Saccharomyces cerevisiae ES488 was used to characterize the modifications of the flavor and antioxidant activity of Zaosu pear-Merlot grape alcoholic beverage. The optimum fermentation parameters identified using a fuzzy mathematical sensory evaluation model were an initial pH of 4.22, a ratio of M. pulcherrima 346 and S. cerevisiae ES488 inoculated 1.13:1, sequential inoculation time 47.02 h and making temperature 19 °C. The optimal mixed fermentation increased the content of terpenes and ethyl esters in pear-grape beverage by 16.5 % and 11.2 % respectively, enhancing floral and fruity aromas and attaining the highest sensory score. Due to the accumulation of flavonoid, anthocyanin, and phenol, the optimized alcoholic beverage exhibited the highest DPPH (97.6 %) and OH (93.3 %) radical scavenging rate as well as iron ion reducing power (3.25), which is conducive to extending the shelf life of beverages.

本研究采用葡萄-梨汁混合发酵的方法,对枣苏梨-梅洛葡萄酒精饮料的风味和抗氧化活性进行了研究。利用模糊数学感官评价模型确定的最佳发酵参数为初始pH为4.22,M. pulcherrima 346与S. cerevisiae ES488接种比例为1.13:1,顺序接种时间为47.02 h,发酵温度为19℃。优化后的混合发酵使梨葡萄饮料中萜烯和乙酯含量分别提高了16.5%和11.2%,增强了花香和果香,感官评分最高。由于黄酮类、花青素和苯酚的积累,优化后的酒精饮料具有最高的DPPH(97.6%)、OH(93.3%)自由基清除率和铁离子还原力(3.25),有利于延长饮料的保质期。
{"title":"Effects of mixed fermentation on the flavor quality and in vitro antioxidant activity of Zaosu pear-Merlot grape composite alcoholic beverage.","authors":"Binyan Xu, Xueshan Yang, Jie Zhao, Baihan Yu, Jiaxin Li, Xia Zhu","doi":"10.1016/j.fochx.2024.102128","DOIUrl":"https://doi.org/10.1016/j.fochx.2024.102128","url":null,"abstract":"<p><p>In this study, a mixed fermentation strategy using grape-blended pear juice co-inoculated with <i>Metschnikowia pulcherrima</i> 346 and <i>Saccharomyces cerevisiae</i> ES488 was used to characterize the modifications of the flavor and antioxidant activity of Zaosu pear-Merlot grape alcoholic beverage. The optimum fermentation parameters identified using a fuzzy mathematical sensory evaluation model were an initial pH of 4.22, a ratio of <i>M. pulcherrima</i> 346 and <i>S. cerevisiae</i> ES488 inoculated 1.13:1, sequential inoculation time 47.02 h and making temperature 19 °C. The optimal mixed fermentation increased the content of terpenes and ethyl esters in pear-grape beverage by 16.5 % and 11.2 % respectively, enhancing floral and fruity aromas and attaining the highest sensory score. Due to the accumulation of flavonoid, anthocyanin, and phenol, the optimized alcoholic beverage exhibited the highest DPPH (97.6 %) and OH (93.3 %) radical scavenging rate as well as iron ion reducing power (3.25), which is conducive to extending the shelf life of beverages.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"25 ","pages":"102128"},"PeriodicalIF":6.5,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11741023/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Food Chemistry: X
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1