Heterogeneous biomechanical/mathematical modeling of spatial prediction of glioblastoma progression using magnetic resonance imaging-based finite element method
{"title":"Heterogeneous biomechanical/mathematical modeling of spatial prediction of glioblastoma progression using magnetic resonance imaging-based finite element method","authors":"","doi":"10.1016/j.cmpb.2024.108441","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>Brain tumors are one of the most common diseases and causes of death in humans. Since the growth of brain tumors has irreparable risks for the patient, predicting the growth of the tumor and knowing its effect on the brain tissue will increase the efficiency of treatment strategies.</div></div><div><h3>Methods</h3><div>This study examines brain tumor growth using mathematical modeling based on the Reaction-Diffusion equation and the biomechanical model based on continuum mechanics principles. With the help of the image threshold technique of magnetic resonance images, a heterogeneous and close-to-reality environment of the brain has been modeled and experimental data validated the results to achieve maximum accuracy in predicting growth.</div></div><div><h3>Results</h3><div>The obtained results have been compared with the reported conventional models to evaluate the presented model. In addition to incorporating the chemotherapy effects in governing equations, the real-time finite element analysis of the stress tensors of the surrounding tissue of tumor cells and considering its role in changing the shape and growth of the tumor has added to the importance and accuracy of the current model.</div></div><div><h3>Conclusions</h3><div>The comparison of the obtained results with conventional models shows that the heterogeneous model has higher reliability due to the consideration of the appropriate properties for the different regions of the brain. The presented model can contribute to personalized medicine, aid in understanding the dynamics of tumor growth, optimize treatment regimens, and develop adaptive therapy strategies.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004346","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective
Brain tumors are one of the most common diseases and causes of death in humans. Since the growth of brain tumors has irreparable risks for the patient, predicting the growth of the tumor and knowing its effect on the brain tissue will increase the efficiency of treatment strategies.
Methods
This study examines brain tumor growth using mathematical modeling based on the Reaction-Diffusion equation and the biomechanical model based on continuum mechanics principles. With the help of the image threshold technique of magnetic resonance images, a heterogeneous and close-to-reality environment of the brain has been modeled and experimental data validated the results to achieve maximum accuracy in predicting growth.
Results
The obtained results have been compared with the reported conventional models to evaluate the presented model. In addition to incorporating the chemotherapy effects in governing equations, the real-time finite element analysis of the stress tensors of the surrounding tissue of tumor cells and considering its role in changing the shape and growth of the tumor has added to the importance and accuracy of the current model.
Conclusions
The comparison of the obtained results with conventional models shows that the heterogeneous model has higher reliability due to the consideration of the appropriate properties for the different regions of the brain. The presented model can contribute to personalized medicine, aid in understanding the dynamics of tumor growth, optimize treatment regimens, and develop adaptive therapy strategies.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.