Kazim Z Gumus , Manuel Menendez , Carlos Gonzalez Baerga , Ira Harmon , Sindhu Kumar , Mutlu Mete , Mauricio Hernandez , Savas Ozdemir , Nurcan Yuruk , K.C. Balaji , Dheeraj R Gopireddy
{"title":"Investigation of radiomic features on MRI images to identify extraprostatic extension in prostate cancer","authors":"Kazim Z Gumus , Manuel Menendez , Carlos Gonzalez Baerga , Ira Harmon , Sindhu Kumar , Mutlu Mete , Mauricio Hernandez , Savas Ozdemir , Nurcan Yuruk , K.C. Balaji , Dheeraj R Gopireddy","doi":"10.1016/j.cmpb.2024.108528","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>Detection of extraprostatic extension (EPE) preoperatively is of critical importance in the context of prostate cancer (PCa) management and outcomes. This study aimed to characterize the radiomic features of malignant prostate lesions based on multi-paramagnetic magnetic resonance imaging (mpMRI).</div></div><div><h3>Methods</h3><div>We analyzed 20 patients who underwent mpMRI followed by radical prostatectomy. Two experienced radiologists manually segmented the 3D lesions using the T2-weighted (T2WI) and Apparent Diffusion Coefficient (ADC) imaging sequences. A total of 210 radiomic features were extracted from each lesion. We used the Recursive Feature Elimination with Cross-Validation to select key features. Using the selected radiomic features, we developed a Multilayer Perceptron (MLP) neural network to classify the EPE and non-EPE lesions. The pathology results were accepted as gold standard for EPE. We measured the performance of the classifier, calculating the area-under-curve (AUC), sensitivity, and specificity.</div></div><div><h3>Results</h3><div>A total of 25 lesions were segmented, including 12 lesions with EPE and 13 lesions without EPE, based on the pathology reports. We selected 18 radiomic features (18/210). The MLP classifier using these features provided a good sensitivity (0.75), specificity (0.79), and AUC of 0.82, 95 % CL [0.59 - 0.96] in identifying the EPE lesions.</div></div><div><h3>Conclusions</h3><div>This pilot study presents 18 radiomic features derived from T2-weighted and ADC images and demonstrates their potential in the preoperative prediction of EPE in PCa using an MLP model.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"259 ","pages":"Article 108528"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724005212","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective
Detection of extraprostatic extension (EPE) preoperatively is of critical importance in the context of prostate cancer (PCa) management and outcomes. This study aimed to characterize the radiomic features of malignant prostate lesions based on multi-paramagnetic magnetic resonance imaging (mpMRI).
Methods
We analyzed 20 patients who underwent mpMRI followed by radical prostatectomy. Two experienced radiologists manually segmented the 3D lesions using the T2-weighted (T2WI) and Apparent Diffusion Coefficient (ADC) imaging sequences. A total of 210 radiomic features were extracted from each lesion. We used the Recursive Feature Elimination with Cross-Validation to select key features. Using the selected radiomic features, we developed a Multilayer Perceptron (MLP) neural network to classify the EPE and non-EPE lesions. The pathology results were accepted as gold standard for EPE. We measured the performance of the classifier, calculating the area-under-curve (AUC), sensitivity, and specificity.
Results
A total of 25 lesions were segmented, including 12 lesions with EPE and 13 lesions without EPE, based on the pathology reports. We selected 18 radiomic features (18/210). The MLP classifier using these features provided a good sensitivity (0.75), specificity (0.79), and AUC of 0.82, 95 % CL [0.59 - 0.96] in identifying the EPE lesions.
Conclusions
This pilot study presents 18 radiomic features derived from T2-weighted and ADC images and demonstrates their potential in the preoperative prediction of EPE in PCa using an MLP model.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.