Cemal Tugrul Yilmaz, Connor Watson, Tania K. Morimoto, Miroslav Krstic
{"title":"Adaptive model-free disturbance rejection for continuum robots","authors":"Cemal Tugrul Yilmaz, Connor Watson, Tania K. Morimoto, Miroslav Krstic","doi":"10.1016/j.automatica.2024.111949","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents two model-free control strategies for the rejection of unknown disturbances in continuum robots. The strategies utilize a neural network-based approximation technique to estimate the uncertain Jacobian matrix using position measurements. The first strategy is designed for periodic disturbances and employs an adaptive model-free controller in conjunction with an adaptive disturbance observer. The second strategy is designed for robustness against arbitrary disturbances and employs time-varying input and update law gains that grow monotonically, resulting in the achievement of asymptotic, exponential, and prescribed-time reference trajectory tracking. The notion of fixed-time stabilization in prescribed time is particularly noteworthy, as it allows for the predefinition of a terminal time, independent of initial conditions and system parameters. A formal stability analysis is presented for each strategy, and the strategies are both tested experimentally with a concentric tube robot subject to unknown disturbances.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"171 ","pages":"Article 111949"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004436","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents two model-free control strategies for the rejection of unknown disturbances in continuum robots. The strategies utilize a neural network-based approximation technique to estimate the uncertain Jacobian matrix using position measurements. The first strategy is designed for periodic disturbances and employs an adaptive model-free controller in conjunction with an adaptive disturbance observer. The second strategy is designed for robustness against arbitrary disturbances and employs time-varying input and update law gains that grow monotonically, resulting in the achievement of asymptotic, exponential, and prescribed-time reference trajectory tracking. The notion of fixed-time stabilization in prescribed time is particularly noteworthy, as it allows for the predefinition of a terminal time, independent of initial conditions and system parameters. A formal stability analysis is presented for each strategy, and the strategies are both tested experimentally with a concentric tube robot subject to unknown disturbances.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.