Generalized Lyapunov functionals for the input-to-state stability of infinite-dimensional systems

IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Automatica Pub Date : 2024-12-03 DOI:10.1016/j.automatica.2024.112005
Jun Zheng , Guchuan Zhu
{"title":"Generalized Lyapunov functionals for the input-to-state stability of infinite-dimensional systems","authors":"Jun Zheng ,&nbsp;Guchuan Zhu","doi":"10.1016/j.automatica.2024.112005","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the input-to-state stability (ISS) of infinite-dimensional systems by introducing a novel notion named <em>generalized ISS-Lyapunov functional</em> (GISS-LF) and the corresponding ISS Lyapunov theorem. Unlike the classical ISS-Lyapunov functional (ISS-LF) that must be positive definite, a GISS-LF can be positive semidefinite. Moreover, such a functional considers not only the relationship with elements in the state space but also takes into account the elements in the input space via a family of certain functionals. Consequently, this notion provides more options in constructing Lyapunov functionals for the ISS assessment of infinite-dimensional systems. In particular, we provide a positive answer to the open question raised by A. Mironchenko and C. Prieur, “Input-to-state stability of infinite-dimensional systems: recent results and open questions”, (Mironchenko and Prieur, 2020), regarding the existence of a coercive ISS-LF for the heat equation with Dirichlet boundary disturbances. To demonstrate the application of the proposed method, which we refer to as the generalized Lyapunov method, we present two examples, showing how to construct GISS-LFs by using positive semidefinite and non-coercive functionals for nonlinear parabolic equations defined over higher dimensional domains with Dirichlet boundary disturbances, and to derive small-gain conditions for guaranteeing the ISS with respect to distributed in-domain disturbances for coupled nonlinear degenerate parabolic equations, which contain ordinary differential equations as special cases.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"172 ","pages":"Article 112005"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824004990","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the input-to-state stability (ISS) of infinite-dimensional systems by introducing a novel notion named generalized ISS-Lyapunov functional (GISS-LF) and the corresponding ISS Lyapunov theorem. Unlike the classical ISS-Lyapunov functional (ISS-LF) that must be positive definite, a GISS-LF can be positive semidefinite. Moreover, such a functional considers not only the relationship with elements in the state space but also takes into account the elements in the input space via a family of certain functionals. Consequently, this notion provides more options in constructing Lyapunov functionals for the ISS assessment of infinite-dimensional systems. In particular, we provide a positive answer to the open question raised by A. Mironchenko and C. Prieur, “Input-to-state stability of infinite-dimensional systems: recent results and open questions”, (Mironchenko and Prieur, 2020), regarding the existence of a coercive ISS-LF for the heat equation with Dirichlet boundary disturbances. To demonstrate the application of the proposed method, which we refer to as the generalized Lyapunov method, we present two examples, showing how to construct GISS-LFs by using positive semidefinite and non-coercive functionals for nonlinear parabolic equations defined over higher dimensional domains with Dirichlet boundary disturbances, and to derive small-gain conditions for guaranteeing the ISS with respect to distributed in-domain disturbances for coupled nonlinear degenerate parabolic equations, which contain ordinary differential equations as special cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
期刊最新文献
Distributed optimal coverage control in multi-agent systems: Known and unknown environments Generalized Lyapunov functionals for the input-to-state stability of infinite-dimensional systems Fully distributed and attack-immune protocols for linear multiagent systems by linear time-varying feedback Meta-learning for model-reference data-driven control Feedback stability analysis via dissipativity with dynamic supply rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1