Correction: The ‘emodin family’ of fungal natural products–amalgamating a century of research with recent genomics-based advances
IF 10.2 1区 化学Q1 BIOCHEMISTRY & MOLECULAR BIOLOGYNatural Product ReportsPub Date : 2024-01-01
Kate M. J. de Mattos-Shipley , Thomas J. Simpson
{"title":"Correction: The ‘emodin family’ of fungal natural products–amalgamating a century of research with recent genomics-based advances","authors":"Kate M. J. de Mattos-Shipley , Thomas J. Simpson","doi":"","DOIUrl":null,"url":null,"abstract":"<div><div>Correction for ‘The ‘emodin family’ of fungal natural products–amalgamating a century of research with recent genomics-based advances’ by Kate M. J. de Mattos-Shipley <em>et al.</em>, <em>Nat. Prod. Rep.</em>, 2023, <strong>40</strong>, 174–201, <span>https://doi.org/10.1039/D2NP00040G</span>.</div></div>","PeriodicalId":94,"journal":{"name":"Natural Product Reports","volume":"41 9","pages":"Page 1456"},"PeriodicalIF":10.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0265056824000588","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Correction for ‘The ‘emodin family’ of fungal natural products–amalgamating a century of research with recent genomics-based advances’ by Kate M. J. de Mattos-Shipley et al., Nat. Prod. Rep., 2023, 40, 174–201, https://doi.org/10.1039/D2NP00040G.
期刊介绍:
Natural Product Reports (NPR) serves as a pivotal critical review journal propelling advancements in all facets of natural products research, encompassing isolation, structural and stereochemical determination, biosynthesis, biological activity, and synthesis.
With a broad scope, NPR extends its influence into the wider bioinorganic, bioorganic, and chemical biology communities. Covering areas such as enzymology, nucleic acids, genetics, chemical ecology, carbohydrates, primary and secondary metabolism, and analytical techniques, the journal provides insightful articles focusing on key developments shaping the field, rather than offering exhaustive overviews of all results.
NPR encourages authors to infuse their perspectives on developments, trends, and future directions, fostering a dynamic exchange of ideas within the natural products research community.