The influence of intramolecular isotope effects on the reaction mechanisms of Ca+ + HD

IF 2.8 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemical Physics Letters Pub Date : 2024-09-26 DOI:10.1016/j.cplett.2024.141665
{"title":"The influence of intramolecular isotope effects on the reaction mechanisms of Ca+ + HD","authors":"","doi":"10.1016/j.cplett.2024.141665","DOIUrl":null,"url":null,"abstract":"<div><div>The state-to-state quantum dynamics of the Ca<sup>+</sup> + HD reaction is investigated at collision energies ranging from 2.0 to 4.0 eV based on a non-adiabatic potential energy surface. The integral cross sections are calculated and compared with previous experimental results. The integral cross section of CaH<sup>+</sup> is significantly larger than that of CaD<sup>+</sup>. Additionally, the differential cross sections for CaH<sup>+</sup> and CaD<sup>+</sup> exhibit distinct trends. Rovibrationally state resolved differential cross sections reveal that the reaction for CaH<sup>+</sup> is dominated by the ‘knockout’ mechanism, while the reaction for CaD<sup>+</sup> is primarily governed by the stripping mechanism.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261424006079","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The state-to-state quantum dynamics of the Ca+ + HD reaction is investigated at collision energies ranging from 2.0 to 4.0 eV based on a non-adiabatic potential energy surface. The integral cross sections are calculated and compared with previous experimental results. The integral cross section of CaH+ is significantly larger than that of CaD+. Additionally, the differential cross sections for CaH+ and CaD+ exhibit distinct trends. Rovibrationally state resolved differential cross sections reveal that the reaction for CaH+ is dominated by the ‘knockout’ mechanism, while the reaction for CaD+ is primarily governed by the stripping mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子内同位素效应对 Ca+ + HD 反应机制的影响
基于非绝热势能面,研究了在碰撞能量为 2.0 至 4.0 eV 时 Ca+ + HD 反应的态对态量子动力学。计算了积分截面,并与之前的实验结果进行了比较。CaH+ 的积分截面明显大于 CaD+。此外,CaH+ 和 CaD+ 的微分截面呈现出不同的趋势。振荡态分辨微分截面显示,CaH+ 的反应由 "敲除 "机制主导,而 CaD+ 的反应主要受剥离机制支配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics Letters
Chemical Physics Letters 化学-物理:原子、分子和化学物理
CiteScore
5.70
自引率
3.60%
发文量
798
审稿时长
33 days
期刊介绍: Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage. Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.
期刊最新文献
Structural and electronic properties of amorphous silicon and germanium monolayers and nanotubes: A DFT investigation Electronic structure of ultrathin single-walled platinum nanotubes Development of a robust Machine learning model for Ames test outcome prediction The influence of intramolecular isotope effects on the reaction mechanisms of Ca+ + HD Theoretical study on the enhanced nonlinear optical responses of sulflowers and selenosulflowers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1