Jun Chen, Yan Li, Chentong Zhang, Liuqing Huang, Xuetao Luo
{"title":"Study on the growth kinetics of Ag3Sn alloy layer and fatigue lifetime prediction of PV interconnection","authors":"Jun Chen, Yan Li, Chentong Zhang, Liuqing Huang, Xuetao Luo","doi":"10.1016/j.solmat.2024.113186","DOIUrl":null,"url":null,"abstract":"<div><div>The electrical conductivity and reliability performances of modules remains a challenge for extending the life-cycling in the widely practical crystalline silicon photovoltaic. Photovoltaic module reliability is severely destroyed by the stress accumulation resulted from the non-stop growth of Ag<sub>3</sub>Sn intermetallic compounds at the solder joint. The growth behavior and microstructural evolution of Ag<sub>3</sub>Sn intermetallic compounds during continuous aging was thoroughly investigated, which provided a method for predicting the fatigue life of solder joints. The results indicated that the Ag<sub>3</sub>Sn intermetallic compounds at the solder joint were formed by continuous diffusion between the brazing material and the Ag electrode in a porous silver electrode, which was significantly affected by temperature and time. When the stress of Ag<sub>3</sub>Sn intermetallic compounds was less than 26.7 MPa, the equivalent Ag<sub>3</sub>Sn thickness was greater than 1.67 μm. During the soldering process, a reasonable soldering force of 1.44 N was required, corresponding to an initial Ag<sub>3</sub>Sn thickness of 1.67–3.02 μm. Moreover, the growth of the intermetallic compounds layer was found to be logarithmic with respect to time and exponential with temperature. Based on the dynamic model of Ag<sub>3</sub>Sn and outdoor temperature data of typical cities in Munich, Taizhou, and Sydney with variable latitudes, the fatigue life of solder joints was accurately predicted through finite element analysis. The work provides a theoretical foundation for the precise categorization of photovoltaic modules in diverse applications.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113186"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824004987","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The electrical conductivity and reliability performances of modules remains a challenge for extending the life-cycling in the widely practical crystalline silicon photovoltaic. Photovoltaic module reliability is severely destroyed by the stress accumulation resulted from the non-stop growth of Ag3Sn intermetallic compounds at the solder joint. The growth behavior and microstructural evolution of Ag3Sn intermetallic compounds during continuous aging was thoroughly investigated, which provided a method for predicting the fatigue life of solder joints. The results indicated that the Ag3Sn intermetallic compounds at the solder joint were formed by continuous diffusion between the brazing material and the Ag electrode in a porous silver electrode, which was significantly affected by temperature and time. When the stress of Ag3Sn intermetallic compounds was less than 26.7 MPa, the equivalent Ag3Sn thickness was greater than 1.67 μm. During the soldering process, a reasonable soldering force of 1.44 N was required, corresponding to an initial Ag3Sn thickness of 1.67–3.02 μm. Moreover, the growth of the intermetallic compounds layer was found to be logarithmic with respect to time and exponential with temperature. Based on the dynamic model of Ag3Sn and outdoor temperature data of typical cities in Munich, Taizhou, and Sydney with variable latitudes, the fatigue life of solder joints was accurately predicted through finite element analysis. The work provides a theoretical foundation for the precise categorization of photovoltaic modules in diverse applications.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.