Bálint Szabó , Ákos Szlávecz , Béla Paláncz , Omer S. Alkhafaf , Ameer B. Alsultani , Katalin Kovács , J. Geoffrey Chase , Balázs István Benyó
{"title":"Comparison of three artificial intelligence methods for predicting 90% quantile interval of future insulin sensitivity of intensive care patients","authors":"Bálint Szabó , Ákos Szlávecz , Béla Paláncz , Omer S. Alkhafaf , Ameer B. Alsultani , Katalin Kovács , J. Geoffrey Chase , Balázs István Benyó","doi":"10.1016/j.ifacsc.2024.100284","DOIUrl":null,"url":null,"abstract":"<div><div>Insulin dosing of hyperglycemic patients in the intensive care unit (ICU) is a complex and nonlinear clinical control problem. Recent model-based glycemic control protocols predict a patient-specific and time-specific future insulin sensitivity distribution, which defines the future patient state in response to insulin and nutrition inputs. The prediction methods provide a 90% confidence interval for a future insulin sensitivity distribution for a given time horizon, making the prediction problem more specific compared to common prediction problems where the aim is to predict the expected value of the given stochastic parameter. This study proposes three alternative artificial intelligence-based insulin sensitivity prediction methods to improve the prediction accuracy and make prediction parameters better fit the clinical requirements. The proposed prediction methods use different neural network models: a classification deep neural network model, a Mixture Density Network model, and a Quantile Regression-based model. A large patient data set was used to create the neural network models, including 2357 patients and 92646 blood glucose measurements from three clinical sites (Christchurch, New Zealand, Gyula, Hungary, and Liege, Belgium). Prediction accuracy was assessed by statistical metrics expressing clinical requirements, as well as via validated in-silico virtual patient simulations comparing the clinical performance of a proven glycaemic control protocol using the alternative prediction methods to assess impact on glycemic control performance and thus the need for these alternative models.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"30 ","pages":"Article 100284"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Insulin dosing of hyperglycemic patients in the intensive care unit (ICU) is a complex and nonlinear clinical control problem. Recent model-based glycemic control protocols predict a patient-specific and time-specific future insulin sensitivity distribution, which defines the future patient state in response to insulin and nutrition inputs. The prediction methods provide a 90% confidence interval for a future insulin sensitivity distribution for a given time horizon, making the prediction problem more specific compared to common prediction problems where the aim is to predict the expected value of the given stochastic parameter. This study proposes three alternative artificial intelligence-based insulin sensitivity prediction methods to improve the prediction accuracy and make prediction parameters better fit the clinical requirements. The proposed prediction methods use different neural network models: a classification deep neural network model, a Mixture Density Network model, and a Quantile Regression-based model. A large patient data set was used to create the neural network models, including 2357 patients and 92646 blood glucose measurements from three clinical sites (Christchurch, New Zealand, Gyula, Hungary, and Liege, Belgium). Prediction accuracy was assessed by statistical metrics expressing clinical requirements, as well as via validated in-silico virtual patient simulations comparing the clinical performance of a proven glycaemic control protocol using the alternative prediction methods to assess impact on glycemic control performance and thus the need for these alternative models.